Misplaced Pages

Afshar experiment: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 17:58, 24 September 2021 editYouRang? (talk | contribs)Extended confirmed users992 edits Specific support← Previous edit Latest revision as of 17:53, 21 November 2024 edit undoCountercheck (talk | contribs)Extended confirmed users8,119 edits clean up, typo(s) fixed: August 14, 2004 → August 14, 2004,, Assistant Professor → assistant professor, Physics → physicsTag: AWB 
(39 intermediate revisions by 14 users not shown)
Line 1: Line 1:
{{Quantum mechanics|cTopic=Formulations}} {{Quantum mechanics|cTopic=Formulations}}
The '''Afshar experiment''' is a variation of the ] in quantum mechanics, devised and carried out by ] while at the private, Boston-based ] (IRIMS).<ref name="Chown2004"/> The results were presented at a Harvard seminar in March 2004.<ref name="Afshar2004"> The '''Afshar experiment''' is a variation of the ] in quantum mechanics, devised and carried out by Shahriar Afshar in 2004.<ref name="Chown2004"/><ref name="Afshar2004">
{{cite journal {{cite journal
| author = S. S. Afshar | author = S. S. Afshar
Line 8: Line 8:
| journal = Harvard Seminar Announcement | journal = Harvard Seminar Announcement
| access-date = 2013-12-01 | access-date = 2013-12-01
| archive-url = https://web.archive.org/web/20120305233130/http://calexport.fas.harvard.edu/cgi-bin/calendar/exporter.cgi?view=event_detail&id=10416384
}}</ref> Afshar claimed that the experiment gives information about which of two paths a ] takes through the apparatus while simultaneously allowing ] between the two paths to be observed, by showing that a grid of wires, placed at the nodes of the interference pattern, does not alter the beams.<ref name="Afshar2005"/> Afshar claimed that the experiment violates the ] of ],<ref name="Zheng2011">
| archive-date = 2012-03-05
{{cite journal
}}</ref> In the experiment, light generated by a ] passes through two closely spaced pinholes, and is refocused by a ] so that the image of each pinhole falls on a separate ]. In addition, a grid of thin wires is placed just before the lens on the dark fringes of an ].<ref name="Afshar2007" />
|author1=J. Zheng |author2=C. Zheng |year=2011

|title=Variant simulation system using quaternion structures
Afshar claimed that the experiment gives information about which path a ] takes through the apparatus, while simultaneously allowing interference between the paths to be observed.<ref name="Afshar2005">
|journal=]
{{cite journal |author=S. S. Afshar |year=2005 |editor1-last=Roychoudhuri |editor1-first=Chandrasekhar |editor2-last=Creath |editor2-first=Katherine |title=Violation of the principle of complementarity, and its implications |journal=] |series=The Nature of Light: What Is a Photon? |volume=5866 |pages=229–244 |arxiv=quant-ph/0701027 |bibcode=2005SPIE.5866..229A |doi=10.1117/12.638774 |s2cid=119375418}}</ref><ref name="Afshar2006">
|volume=59
{{cite journal |author=S. S. Afshar |year=2006 |title=Violation of Bohr's complementarity: One slit or both? |journal=] |volume=810 |pages=294–299 |arxiv=quant-ph/0701039 |bibcode=2006AIPC..810..294A |doi=10.1063/1.2158731 |s2cid=117905639}}</ref> According to Afshar, this violates the ] of ].<ref name="Afshar2007">
|issue=5
|pages=484
|doi=10.1080/09500340.2011.636152
|bibcode = 2012JMOp...59..484Z }}</ref> which states roughly that the particle and wave aspects of quantum objects cannot be observed at the same time, and specifically the ].<ref name="Afshar2007">
{{cite journal {{cite journal
|author1=S. S. Afshar |author2=E. Flores |author3=K. F. McDonald |author4=E. Knoesel |year=2007 |author1=S. S. Afshar |author2=E. Flores |author3=K. F. McDonald |author4=E. Knoesel |year=2007
Line 26: Line 23:
|bibcode=2007FoPh...37..295A |bibcode=2007FoPh...37..295A
|doi=10.1007/s10701-006-9102-8 |doi=10.1007/s10701-006-9102-8
|s2cid=2161197 }}</ref><ref name="Zheng2011">
}}</ref> The experiment has been repeated by a number of investigators but its interpretation is controversial and there are several theories that explain the effect without violating complementarity.<ref name="Kastner2005"/><ref name="Steuernagel2007"/><ref name="EGdualityOK">
{{cite journal |author1=J. Zheng |author2=C. Zheng |year=2011 |title=Variant simulation system using quaternion structures |journal=] |volume=59 |issue=5 |pages=484 |bibcode=2012JMOp...59..484Z |doi=10.1080/09500340.2011.636152 |s2cid=121934786}}</ref>

The experiment has been analyzed and repeated by a number of investigators.<ref>{{Cite journal |last=Georgiev |first=Danko |date=2012-01-26 |title=Quantum Histories and Quantum Complementarity |journal=ISRN Mathematical Physics |language=en |volume=2012 |pages=1–37 |doi=10.5402/2012/327278 |issn=2090-4681|doi-access=free }}</ref> There are several theories that explain the effect without violating complementarity.<ref name="Kastner2005" /><ref name="Steuernagel2007" /><ref name="EGdualityOK">
{{cite journal {{cite journal
|author=V. Jacques |author=V. Jacques
Line 36: Line 36:
|bibcode=2008NJPh...10l3009J |bibcode=2008NJPh...10l3009J
|doi=10.1088/1367-2630/10/12/123009 |doi=10.1088/1367-2630/10/12/123009
|s2cid=2627030
|display-authors=etal}}</ref><ref name="Georgiev2007">{{cite journal
|display-authors=etal}}</ref><ref name="Georgiev2012">
|author = D. D. Georgiev
|year = 2007
|title = Single photon experiments and quantum complementarity
|url = http://www.ptep-online.com/index_files/2007/PP-09-19.PDF
|journal = ]
|volume = 2
|pages = 97–103
|access-date = 2009-08-15
|archive-url = https://web.archive.org/web/20100927150546/http://ptep-online.com/index_files/2007/PP-09-19.PDF
|archive-date = 2010-09-27
|url-status = dead
}}</ref><ref name="Georgiev2012">
{{cite journal {{cite journal
| author = D. D. Georgiev | author = D. D. Georgiev
| year = 2012 | year = 2012
| title = Quantum histories and quantum complementarity | title = Quantum histories and quantum complementarity
| url = http://www.isrn.com/journals/mp/2012/327278/
| journal = ISRN Mathematical Physics | journal = ISRN Mathematical Physics
| volume = 2012 | volume = 2012
| page = 327278 | page = 327278
| doi = 10.5402/2012/327278 | doi = 10.5402/2012/327278
| access-date = 2012-02-25
| archive-url = https://web.archive.org/web/20120926041108/http://www.isrn.com/journals/mp/2012/327278/
| archive-date = 2012-09-26
| url-status = dead
| doi-access = free | doi-access = free
}} }}
</ref> ] claims the experiment provides evidence for the ] of quantum mechanics over other interpretations.
</ref>

== Overview ==
Afshar's experiment uses a variant of ] classic ] to create ]s to investigate ]. One of Afshar's assertions is that, in his experiment, it is possible to check for ]s of a ] stream (a measurement of the wave nature of the photons) while at the same time determining each photon's "which-path" information (a measurement of the particle nature of the photons).<ref name="Afshar2005">
{{cite journal
| author=S. S. Afshar
| year=2005
| title=Violation of the principle of complementarity, and its implications
| journal=]
| volume=5866 | pages=229–244
| arxiv=quant-ph/0701027
| doi=10.1117/12.638774
| series=The Nature of Light: What Is a Photon?
| bibcode=2005SPIE.5866..229A
| editor1-last=Roychoudhuri
| editor1-first=Chandrasekhar
| editor2-last=Creath
| editor2-first=Katherine
}}</ref><ref name="Afshar2006">
{{cite journal
| author=S. S. Afshar
| year=2006
| title=Violation of Bohr's complementarity: One slit or both?
| journal=]
| volume=810 | pages=294–299
| arxiv=quant-ph/0701039
| doi=10.1063/1.2158731
| bibcode=2006AIPC..810..294A
}}</ref>
In his experiment, pinhole A is correlated to detector 1 when pinhole B is closed, and pinhole B is correlated to detector 2 when pinhole A is closed. Afshar's claim for the violation of the ] depends crucially on his assertion that these correlations remain, and thus which-path information is preserved, when both pinholes are open, and cites Wheeler<ref name="Wheeler">
{{cite book
| last = Wheeler
| first = John
| date = 1978
| title = Mathematical foundations of quantum theory
| page = 9-48
| publisher = Elsevier
}}</ref>
in support.<ref name="Afshar2007"/>


== History == == History ==
Shahriar S. Afshar's experimental work was done initially at the Institute for Radiation-Induced Mass Studies (IRIMS) in Boston in 2001 and later reproduced at ] in 2003, while he was a research scholar there.<ref name="Chown2004">{{cite journal Shahriar Afshar's experimental work was done initially at the Institute for Radiation-Induced Mass Studies (IRIMS)<ref>{{Cite web |title=Institute for Radiation-Induced Mass Studies (IRIMS) |url=https://irims.org/index.html |access-date=2023-09-21 |website=irims.org}}</ref> in Boston and later reproduced at ], while he was there as a ].<ref name="Chown2004">{{cite journal
| last = Chown | last = Chown
| year = 2004 | year = 2004
| title = Quantum rebel wins over doubters | title = Quantum Rebel
| url = https://www.newscientist.com/article/mg19325915.400-quantum-rebel-wins-over-doubters.html | url = https://www.newscientist.com/article/mg18324575-300-quantum-rebel/
| journal = ] | journal = ]
| volume = 183 | issue = 2457 | pages = 30–35 | volume = 183 | issue = 2457 | pages = 30–35
|first = Marcus}}{{Paywall}}</ref> The results were presented at a Harvard seminar in March 2004,<ref name="Afshar2004"/> and published as conference proceeding by ] (SPIE).<ref name="Afshar2005"/> The experiment was featured as the cover story in the July 24, 2004 edition of '']''.<ref name="Chown2004"/><ref name="bombshell">{{Dead link|date=April 2019 |bot=InternetArchiveBot |fix-attempted=yes }} {{dead link|date=June 2016|bot=medic}}{{cbignore|bot=medic}}<!--attempted fix for this dead link failed 30 Nov 2013--> Science Friday</ref> The ''New Scientist'' feature article itself generated many responses, including various letters to the editor that appeared in the August 7 and August 14, 2004 issues, arguing against the conclusions being drawn by Afshar, with ]'s response.<ref name="Cramer2004"> |first = Marcus}}{{Subscription required}}</ref> The results were first presented at a seminar at Harvard in March 2004.<ref name="Afshar2004"/> The experiment was featured as the cover story in the July 24, 2004 edition of the popular science magazine '']'' endorsed by professor John G. Cramer of the ].<ref name="Chown2004"/><ref name="bombshell">{{Dead link|date=April 2019 |bot=InternetArchiveBot |fix-attempted=yes }}{{cbignore|bot=medic}}<!--attempted fix for this dead link failed 30 Nov 2013--> Science Friday</ref> The ''New Scientist'' feature article generated many responses, including various letters to the editor that appeared in the August 7 and August 14, 2004, issues, arguing against the conclusions being drawn by Afshar.<ref name="Cramer2004">
{{cite journal {{cite journal
| author = J. G. Cramer | author = J. G. Cramer
Line 120: Line 66:
| journal = ] | journal = ]
| volume = 183 | issue = 2461 | page = 26 | volume = 183 | issue = 2461 | page = 26
}}</ref> The results were published in a ] conference proceedings in 2005.<ref name="Afshar2005" /> A follow-up paper was published in a scientific journal ] in January 2007<ref name="Afshar2007"/> and featured in ''New Scientist'' in February 2007.<ref name="Chown2007">{{cite journal
}}</ref> Afshar presented his work also at the ] meeting in Los Angeles, in late March 2005.<ref name="Afshar2005b">
| last = Chown
{{cite journal
| author = S. S. Afshar | year = 2007
| title = Quantum rebel wins over doubters
| year = 2005
| url = https://www.newscientist.com/article/mg19325915-400-quantum-rebel-wins-over-doubters/
| title = Experimental Evidence for Violation of Bohr's Principle of Complementarity
| journal = ]
| url = http://meetings.aps.org/Meeting/MAR05/Event/26224
| volume = 197 | issue = 2591 | page = 13
| journal = APS Meeting, March 21–25, los Angeles, California
|first = Marcus}}{{Subscription required}}</ref>
| pages =33009
| bibcode = 2005APS..MARP33009A
}}</ref> His peer-reviewed paper was published in ] in January 2007.<ref name="Afshar2007"/>


== Experimental setup == == Experimental setup ==
Line 136: Line 80:
] ]


The experiment uses a setup similar to that for the ]. In Afshar's variant, light generated by a ] passes through two closely spaced ''circular'' pinholes (not slits). After the dual pinholes, a ] refocuses the light so that the image of each pinhole falls on separate photon-detectors (Fig. 1). With pinhole 2 closed, a photon that goes through pinhole 1 impinges only on photon detector 1. Similarly, with pinhole 1 closed, a photon that goes through pinhole 2 impinges only on photon detector 2. With both pinholes open, Afshar claims, citing Wheeler<ref name="Wheeler"/> in support, that pinhole 1 remains correlated to photon Detector 1 (and vice versa for pinhole 2 to photon Detector 2), and therefore that which-way information is preserved when both pinholes are open.<ref name="Afshar2007"/> The experiment uses a setup similar to that for the ]. In Afshar's variant, light generated by a ] passes through two closely spaced ''circular'' pinholes (not slits). After the dual pinholes, a ] refocuses the light so that the image of each pinhole falls on separate photon-detectors (Fig. 1). With pinhole 2 closed, a photon that goes through pinhole 1 impinges only on photon detector 1. Similarly, with pinhole 1 closed, a photon that goes through pinhole 2 impinges only on photon detector 2. With both pinholes open, Afshar claims, citing Wheeler<ref name="Wheeler">
{{cite book
| last = Wheeler
| first = John
| date = 1978
| title = Mathematical foundations of quantum theory
| pages = 9–48
| publisher = Elsevier
}}</ref> in support, that pinhole 1 remains correlated to photon Detector 1 (and vice versa for pinhole 2 to photon Detector 2), and therefore that which-way information is preserved when both pinholes are open.<ref name="Afshar2007"/>


When the light acts as a wave, because of ] one can observe that there are regions that the photons avoid, called ''dark fringes''. A grid of thin wires is placed just before the lens (Fig. 2) so that the wires lie in the dark fringes of an interference pattern which is produced by the dual pinhole setup. If one of the pinholes is blocked, the interference pattern will no longer be formed, and the grid of wires causes appreciable ] in the light and blocks some of it from detection by the corresponding photon detector. However, when both pinholes are open, the effect of the wires is negligible, comparable to the case in which there are no wires placed in front of the lens (Fig.3), because the wires lie in the dark fringes of an interference pattern. The effect is not dependent on the light intensity (photon flux). When the light acts as a wave, because of ] one can observe that there are regions that the photons avoid, called ''dark fringes''. A grid of thin wires is placed just before the lens (Fig. 2) so that the wires lie in the dark fringes of an interference pattern which is produced by the dual pinhole setup. If one of the pinholes is blocked, the interference pattern will no longer be formed, and the grid of wires causes appreciable ] in the light and blocks some of it from detection by the corresponding photon detector. However, when both pinholes are open, the effect of the wires is negligible, comparable to the case in which there are no wires placed in front of the lens (Fig. 3), because the wires lie in the dark fringes of an interference pattern. The effect is not dependent on the light intensity (photon flux).

To establish violation of the ], Afshar considers the case in which both pinholes are open and asserts both high visibility ''V'' of interference as well as high distinguishability ''D'' (corresponding to which-path information), so that ''V''<sup>2</sup> + ''D''<sup>2</sup> > 1.<ref name="Afshar2007"/> His claim depends heavily on whether which-path information is preserved when both pinholes are open.


== Afshar's interpretation == == Afshar's interpretation ==
Afshar's conclusion is that, when both pinholes are open, the light exhibits wave-like behavior when going past the wires, since the light goes through the spaces between the wires but avoids the wires themselves, but also exhibits particle-like behavior after going through the lens, with photons going to a correlated photo-detector. Afshar argues that this behavior contradicts the ] to the extent that it shows both wave and particle characteristics in the same experiment for the same photons. Afshar's conclusion is that, when both pinholes are open, the light exhibits wave-like behavior when going past the wires, since the light goes through the spaces between the wires but avoids the wires themselves, but also exhibits particle-like behavior after going through the lens, with photons going to a correlated photo-detector. Afshar argues that this behavior contradicts the ] to the extent that it shows both wave and particle characteristics in the same experiment for the same photons.

Afshar asserts that there is simultaneously high visibility ''V'' of interference as well as high distinguishability ''D'' (corresponding to which-path information), so that ''V''<sup>2</sup> + ''D''<sup>2</sup> > 1, and the ] is violated.<ref name="Afshar2007" />


== Reception == == Reception ==
=== Specific criticism=== === Specific criticism===
A number of scientists have published criticisms of Afshar's interpretation of his results, some of which reject the claims of a violation of complementarity, while differing in the way they explain how complementarity copes with the experiment. Afshar has responded to these critics in his academic talks, ], and other forums. For example, one paper contests Afshar's core claim, that the ] is violated. The researchers re-ran the experiment, using a different method for measuring the visibility of the interference pattern than that used by Afshar, and found no violation of complementarity, concluding "This result demonstrates that the experiment can be perfectly explained by the Copenhagen interpretation of quantum mechanics."<ref name="EGdualityOK"/> A number of scientists have published criticisms of Afshar's interpretation of his results, some of which reject the claims of a violation of complementarity, while differing in the way they explain how complementarity copes with the experiment. For example, one paper contests Afshar's core claim, that the ] is violated. The researchers re-ran the experiment, using a different method for measuring the visibility of the interference pattern than that used by Afshar, and found no violation of complementarity, concluding "This result demonstrates that the experiment can be perfectly explained by the Copenhagen interpretation of quantum mechanics."<ref name="EGdualityOK"/>


Below is a synopsis of papers by several critics highlighting their main arguments and the disagreements they have amongst themselves: Below is a synopsis of papers by several critics highlighting their main arguments and the disagreements they have amongst themselves:


* , Committee on the History and Philosophy of Science, ].<ref name="Kastner2005"> * Ruth Kastner, Committee on the History and Philosophy of Science, ].<ref name="Kastner2005">
{{cite journal {{cite journal
| author = R. Kastner | author = R. Kastner
Line 160: Line 112:
| issue = 4 | issue = 4
| bibcode = 2005SHPMP..36..649K | bibcode = 2005SHPMP..36..649K
|arxiv = quant-ph/0502021 }}</ref><ref name="Kastner2006"> |arxiv = quant-ph/0502021 | s2cid = 119438183
}}</ref><ref name="Kastner2006">
{{cite journal {{cite journal
| author = R. E. Kastner | author = R. E. Kastner
Line 170: Line 123:
| bibcode = 2006APS..MARD40011K | bibcode = 2006APS..MARD40011K
}}</ref> }}</ref>
*:Kastner's criticism, published in a peer-reviewed paper, proceeds by setting up a ] and applying Afshar's logic to it to expose its flaw. She proposes that Afshar's experiment is equivalent to preparing an electron in a spin-up state and then measuring its sideways spin. This does not imply that one has found out the up-down spin state and the sideways spin state of any electron simultaneously. Applied to Afshar's experiment: "Nevertheless, even with the grid removed, since the photon is prepared in a superposition ''S'', the measurement at the final screen at ''t''<sub>2</sub> ''never really is'' a 'which-way' measurement (the term traditionally attached to the slit-basis observable <math>\mathcal O</math>), because it cannot tell us 'which slit the photon actually went through.' *:Kastner's criticism, published in a peer-reviewed paper, proceeds by setting up a ] and applying Afshar's logic to it to expose its flaw. She proposes that Afshar's experiment is equivalent to preparing an electron in a spin-up state and then measuring its sideways spin. This does not imply that one has found out the up-down spin state and the sideways spin state of any electron simultaneously. Applied to Afshar's experiment: "Nevertheless, even with the grid removed, since the photon is prepared in a superposition ''S'', the measurement at the final screen at ''t''<sub>2</sub> ''never really is'' a 'which-way' measurement (the term traditionally attached to the slit-basis observable <math>\mathcal O</math>), because it cannot tell us 'which slit the photon actually went through.'
* Daniel Reitzner, Research Center for Quantum Information, Institute of Physics, ], ], ].<ref name="Reitzner">

{{cite arXiv
* , Research Center for Quantum Information, Institute of Physics, ], ], ].<ref name="Reitzner">
{{cite journal
| author = D. Reitzner | author = D. Reitzner
| title = Comment on Afshar’s experiments. | title = Comment on Afshar's experiments.
| year = 2007
|arxiv = quant-ph/0701152 }}</ref>
|eprint = quant-ph/0701152 }}</ref>
*:Reitzner performed numerical simulations, published in a preprint, of Afshar's arrangement and obtained the same results that Afshar obtained experimentally. From this he argues that the photons exhibit wave behavior, including high fringe visibility but no which-way information, up to the point they hit the detector: "In other words the two-peaked distribution is an interference pattern and the photon behaves as a wave and exhibits no particle properties until it hits the plate. As a result a which-way information can never be obtained in this way." *:Reitzner performed numerical simulations, published in a preprint, of Afshar's arrangement and obtained the same results that Afshar obtained experimentally. From this he argues that the photons exhibit wave behavior, including high fringe visibility but no which-way information, up to the point they hit the detector: "In other words the two-peaked distribution is an interference pattern and the photon behaves as a wave and exhibits no particle properties until it hits the plate. As a result a which-way information can never be obtained in this way."

* ], Professor of Physics at ]<ref name="Unruh2004"> * ], Professor of Physics at ]<ref name="Unruh2004">
{{cite web {{cite web
Line 187: Line 139:
}}</ref> }}</ref>
*:Unruh, like Kastner, proceeds by setting up an arrangement that he feels is equivalent but simpler. The size of the effect is larger so that it is easier to see the flaw in the logic. In Unruh's view that flaw is, in the case that an obstacle exists at the position of the dark fringes, "drawing the inference that IF the particle was detected in detector 1, THEN it must have come from path 1. Similarly, IF it were detected in detector 2, then it came from path 2." In other words, he accepts the existence of an interference pattern but rejects the existence of which-way information. *:Unruh, like Kastner, proceeds by setting up an arrangement that he feels is equivalent but simpler. The size of the effect is larger so that it is easier to see the flaw in the logic. In Unruh's view that flaw is, in the case that an obstacle exists at the position of the dark fringes, "drawing the inference that IF the particle was detected in detector 1, THEN it must have come from path 1. Similarly, IF it were detected in detector 2, then it came from path 2." In other words, he accepts the existence of an interference pattern but rejects the existence of which-way information.
* ], Former assistant professor of physics, ].<ref name="Motl2004">

* ], Former Assistant Professor of Physics, ].<ref name="Motl2004">
{{cite web {{cite web
| author = L. Motl | author = L. Motl
Line 196: Line 147:
}}</ref> }}</ref>
*:Motl's criticism, published in his blog, is based on an analysis of Afshar's actual setup, instead of proposing a different experiment like Unruh and Kastner. In contrast to Unruh and Kastner, he believes that which-way information always exists, but argues that the measured contrast of the interference pattern is actually very low: "Because this signal (disruption) from the second, middle picture is small (equivalently, it only affects a very small portion of the photons), the contrast V is also very small, and goes to zero for infinitely thin wires." He also argues that the experiment can be understood with classical electrodynamics and has "nothing to do with quantum mechanics". *:Motl's criticism, published in his blog, is based on an analysis of Afshar's actual setup, instead of proposing a different experiment like Unruh and Kastner. In contrast to Unruh and Kastner, he believes that which-way information always exists, but argues that the measured contrast of the interference pattern is actually very low: "Because this signal (disruption) from the second, middle picture is small (equivalently, it only affects a very small portion of the photons), the contrast V is also very small, and goes to zero for infinitely thin wires." He also argues that the experiment can be understood with classical electrodynamics and has "nothing to do with quantum mechanics".
* Ole Steuernagel, School of Physics, Astronomy and Mathematics, ], UK.<ref name="Steuernagel2007">
* , Néel Institute, Grenoble, France.<ref name="Drezet2005">
{{cite arxiv
| author = Aurelien Drezet
| year = 2005
| title = Complementarity and Afshar's experiment
| eprint=quant-ph/0508091
}}</ref><ref name="Drezet2011">{{cite journal
|author = Aurelien Drezet
|year = 2011
|title = Wave particle duality and the Afshar experiment
|url = http://www.ptep-online.com/index_files/2011/PP-24-07.PDF
|journal = ]
|volume = 1
|pages = 57–67
|arxiv = 1008.4261
|access-date = 2012-02-25
|archive-url = https://web.archive.org/web/20111011134941/http://ptep-online.com/index_files/2011/PP-24-07.PDF
|archive-date = 2011-10-11
|url-status = dead
}}</ref>
*:Drezet argues that the classical concept of a "path" leads to much confusion in this context, but "The real problem in Afshar's interpretation comes from the fact that the interference pattern is not actually completely recorded." The argument is similar to that of Motl's, that the observed visibility of the fringes is actually very small. Another way he looks at the situation is that the photons used to measure the fringes are not the same photons that are used to measure the path. The experimental setup he analyzes is only a "slightly modified version" of the one used by Afshar.
* , School of Physics, Astronomy and Mathematics, ], UK.<ref name="Steuernagel2007">
{{cite journal {{cite journal
| author = O. Steuernagel | author = O. Steuernagel
Line 228: Line 158:
|bibcode = 2007FoPh...37.1370S |bibcode = 2007FoPh...37.1370S
| issue = 9 | issue = 9
| s2cid = 53056142
}}</ref>
}}</ref>
*:Steuernagel makes a quantitative analysis of the various transmitted, refracted, and reflected modes in a setup that differs only slightly from Afshar's. He concludes that the Englert-Greenberger duality relation is strictly satisfied, and in particular that the fringe visibility for thin wires is small. Like some of the other critics, he emphasizes that inferring an interference pattern is not the same as measuring one: "Finally, the greatest weakness in the analysis given by Afshar is the ''inference'' that an interference pattern must be present." *:Steuernagel makes a quantitative analysis of the various transmitted, refracted, and reflected modes in a setup that differs only slightly from Afshar's. He concludes that the Englert-Greenberger duality relation is strictly satisfied, and in particular that the fringe visibility for thin wires is small. Like some of the other critics, he emphasizes that inferring an interference pattern is not the same as measuring one: "Finally, the greatest weakness in the analysis given by Afshar is the ''inference'' that an interference pattern must be present."
* Andrew Knight, Department of Physics, New York University<ref name="Knight2020">

* Andrew Knight argues that Afshar’s claim to violate complementarity is a simple logical inconsistency: by setting up the experiment so that photons are spatially coherent over the two pinholes, the pinholes are necessarily indistinguishable by those photons.<ref name="Knight2020">
{{cite journal {{cite journal
| author = Andrew Knight | author = Andrew Knight
| title = No Paradox in Wave-Particle Duality | title = No Paradox in Wave-Particle Duality
|journal=] |journal=]
| year = 2020
|volume=50 |issue=11 |pages=1723-1727
|volume=50 |issue=11 |pages=1723–1727
|arxiv=2006.05315 |arxiv=2006.05315
|doi=10.1007/s10701-020-00379-9 |doi=10.1007/s10701-020-00379-9
| bibcode = 2020FoPh...50.1723K
}}</ref> “In other words, Afshar et al. claim in one breath to have set up the experiment so that pinholes A and B are inherently indistinguishable by certain photons , and in another breath to have distinguished pinholes A and B with those same photons.”
| s2cid = 219559143
}}</ref>
*:Argues that Afshar's claim to violate complementarity is a simple logical inconsistency: by setting up the experiment so that photons are spatially coherent over the two pinholes, the pinholes are necessarily indistinguishable by those photons. “In other words, Afshar et al. claim in one breath to have set up the experiment so that pinholes A and B are inherently indistinguishable by certain photons , and in another breath to have distinguished pinholes A and B with those same photons.”


=== Specific support === === Specific support ===
*Flores et al. criticize Kastner's setup and propose an alternative experimental setup.<ref name="Flores2007"> * Afshar's coauthors Eduardo Flores and Ernst Knoesel criticize Kastner's setup and propose an alternative experimental setup.<ref name="Flores2007">
{{cite journal {{cite book
| author = E. Flores and E. Knoesel | author = E. Flores and E. Knoesel
| editor-first1 = Chandrasekhar
| title = Why Kastner analysis does not apply to a modified Afshar experiment.
| editor-first2 = Al F
|arxiv = quant-ph/0702210 }}</ref> By removing the lens of Afshar and causing two beams to overlap at a small angle, Flores et al. aimed to show that conservation of momentum guarantee the preservation of which-path information when both pinholes are open. But this experiment is still subject to Luboz's objection that the 2 beams have a sub-microscopic diffraction pattern created by the convergence of the beams before the slits; the result would have been the measuring of which slit was open before the wires were ever reached.
| editor-first3 = Katherine
| editor-last1 = Roychoudhuri
| editor-last2 = Kracklauer
| editor-last3 = Creath
| title = The Nature of Light: What Are Photons?
| chapter = Why Kastner analysis does not apply to a modified Afshar experiment
| year = 2007
| volume = 6664
| pages = 66640O
| doi = 10.1117/12.730965
|arxiv = quant-ph/0702210 | s2cid = 119028739
}}</ref> By removing the lens of Afshar and causing two beams to overlap at a small angle, Flores et al. aimed to show that conservation of momentum guarantee the preservation of which-path information when both pinholes are open. But this experiment is still subject to Motl's objection that the 2 beams have a sub-microscopic diffraction pattern created by the convergence of the beams before the slits; the result would have been the measuring of which slit was open before the wires were ever reached.


*] adopts Afshar's interpretation of the experiment to support his own ] of quantum mechanics and challenge the ].<ref name="Cramer2005">{{cite journal *] adopts Afshar's interpretation of the experiment to support his own ] of quantum mechanics over the ] and the ].<ref name="Cramer2005">{{cite journal
|author = J. G. Cramer |author = J. G. Cramer
|year = 2005 |year = 2005
Line 258: Line 204:
|archive-date = 2004-12-08 |archive-date = 2004-12-08
|url-status = dead |url-status = dead
}}</ref><ref>{{cite book |author=Cramer, JG |title=The Quantum Handshake: Entanglement, Nonlocality and Transactions |publisher=Springer Verlag |year=2015 |isbn=978-3-319-24642-0 | pages=111–112 | url=https://archive.org/details/quantumhandshake0000cram/page/111 }}</ref>
}}</ref> This claim has not been published in a peer reviewed journal.


== See also == == See also ==
Line 268: Line 214:
== References == == References ==
{{Reflist|30em}} {{Reflist|30em}}

== Further reading ==
*{{cite journal|author1=Mir|author2=Lundeen|author3=Mitchell|author4=Steinberg|author5=Garretson|author6=Wiseman|title=A double-slit 'which-way' experiment on the complementarity--uncertainty debate|doi=10.1088/1367-2630/9/8/287|year=2007|journal=New Journal of Physics|volume=9|issue=8|pages=287|arxiv=0706.3966|bibcode = 2007NJPh....9..287M }}
* {{cite book |author=Cramer, JG |title=The Quantum Handshake: Entanglement, Nonlocality and Transactions |publisher=Springer Verlag |year=2015 |isbn=978-3-319-24642-0 }}

== External links ==
*


{{Quantum mechanics topics}} {{Quantum mechanics topics}}

Latest revision as of 17:53, 21 November 2024

Part of a series of articles about
Quantum mechanics
i d d t | Ψ = H ^ | Ψ {\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle } Schrödinger equation
Background
Fundamentals
Experiments
Formulations
Equations
Interpretations
Advanced topics
Scientists

The Afshar experiment is a variation of the double-slit experiment in quantum mechanics, devised and carried out by Shahriar Afshar in 2004. In the experiment, light generated by a laser passes through two closely spaced pinholes, and is refocused by a lens so that the image of each pinhole falls on a separate single-photon detector. In addition, a grid of thin wires is placed just before the lens on the dark fringes of an interference pattern.

Afshar claimed that the experiment gives information about which path a photon takes through the apparatus, while simultaneously allowing interference between the paths to be observed. According to Afshar, this violates the complementarity principle of quantum mechanics.

The experiment has been analyzed and repeated by a number of investigators. There are several theories that explain the effect without violating complementarity. John G. Cramer claims the experiment provides evidence for the transactional interpretation of quantum mechanics over other interpretations.

History

Shahriar Afshar's experimental work was done initially at the Institute for Radiation-Induced Mass Studies (IRIMS) in Boston and later reproduced at Harvard University, while he was there as a visiting researcher. The results were first presented at a seminar at Harvard in March 2004. The experiment was featured as the cover story in the July 24, 2004 edition of the popular science magazine New Scientist endorsed by professor John G. Cramer of the University of Washington. The New Scientist feature article generated many responses, including various letters to the editor that appeared in the August 7 and August 14, 2004, issues, arguing against the conclusions being drawn by Afshar. The results were published in a SPIE conference proceedings in 2005. A follow-up paper was published in a scientific journal Foundations of Physics in January 2007 and featured in New Scientist in February 2007.

Experimental setup

Fig.1 Experiment without obstructing wire grid
Fig.2 Experiment with obstructing wire grid and one pinhole covered
Fig.3 Experiment with wire grid and both pinholes open. The wires lie in the dark fringes and thus block very little light

The experiment uses a setup similar to that for the double-slit experiment. In Afshar's variant, light generated by a laser passes through two closely spaced circular pinholes (not slits). After the dual pinholes, a lens refocuses the light so that the image of each pinhole falls on separate photon-detectors (Fig. 1). With pinhole 2 closed, a photon that goes through pinhole 1 impinges only on photon detector 1. Similarly, with pinhole 1 closed, a photon that goes through pinhole 2 impinges only on photon detector 2. With both pinholes open, Afshar claims, citing Wheeler in support, that pinhole 1 remains correlated to photon Detector 1 (and vice versa for pinhole 2 to photon Detector 2), and therefore that which-way information is preserved when both pinholes are open.

When the light acts as a wave, because of quantum interference one can observe that there are regions that the photons avoid, called dark fringes. A grid of thin wires is placed just before the lens (Fig. 2) so that the wires lie in the dark fringes of an interference pattern which is produced by the dual pinhole setup. If one of the pinholes is blocked, the interference pattern will no longer be formed, and the grid of wires causes appreciable diffraction in the light and blocks some of it from detection by the corresponding photon detector. However, when both pinholes are open, the effect of the wires is negligible, comparable to the case in which there are no wires placed in front of the lens (Fig. 3), because the wires lie in the dark fringes of an interference pattern. The effect is not dependent on the light intensity (photon flux).

Afshar's interpretation

Afshar's conclusion is that, when both pinholes are open, the light exhibits wave-like behavior when going past the wires, since the light goes through the spaces between the wires but avoids the wires themselves, but also exhibits particle-like behavior after going through the lens, with photons going to a correlated photo-detector. Afshar argues that this behavior contradicts the principle of complementarity to the extent that it shows both wave and particle characteristics in the same experiment for the same photons.

Afshar asserts that there is simultaneously high visibility V of interference as well as high distinguishability D (corresponding to which-path information), so that V + D > 1, and the wave-particle duality relation is violated.

Reception

Specific criticism

A number of scientists have published criticisms of Afshar's interpretation of his results, some of which reject the claims of a violation of complementarity, while differing in the way they explain how complementarity copes with the experiment. For example, one paper contests Afshar's core claim, that the Englert–Greenberger duality relation is violated. The researchers re-ran the experiment, using a different method for measuring the visibility of the interference pattern than that used by Afshar, and found no violation of complementarity, concluding "This result demonstrates that the experiment can be perfectly explained by the Copenhagen interpretation of quantum mechanics."

Below is a synopsis of papers by several critics highlighting their main arguments and the disagreements they have amongst themselves:

  • Ruth Kastner, Committee on the History and Philosophy of Science, University of Maryland, College Park.
    Kastner's criticism, published in a peer-reviewed paper, proceeds by setting up a thought experiment and applying Afshar's logic to it to expose its flaw. She proposes that Afshar's experiment is equivalent to preparing an electron in a spin-up state and then measuring its sideways spin. This does not imply that one has found out the up-down spin state and the sideways spin state of any electron simultaneously. Applied to Afshar's experiment: "Nevertheless, even with the grid removed, since the photon is prepared in a superposition S, the measurement at the final screen at t2 never really is a 'which-way' measurement (the term traditionally attached to the slit-basis observable O {\displaystyle {\mathcal {O}}} ), because it cannot tell us 'which slit the photon actually went through.'
  • Daniel Reitzner, Research Center for Quantum Information, Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia.
    Reitzner performed numerical simulations, published in a preprint, of Afshar's arrangement and obtained the same results that Afshar obtained experimentally. From this he argues that the photons exhibit wave behavior, including high fringe visibility but no which-way information, up to the point they hit the detector: "In other words the two-peaked distribution is an interference pattern and the photon behaves as a wave and exhibits no particle properties until it hits the plate. As a result a which-way information can never be obtained in this way."
  • W. G. Unruh, Professor of Physics at University of British Columbia
    Unruh, like Kastner, proceeds by setting up an arrangement that he feels is equivalent but simpler. The size of the effect is larger so that it is easier to see the flaw in the logic. In Unruh's view that flaw is, in the case that an obstacle exists at the position of the dark fringes, "drawing the inference that IF the particle was detected in detector 1, THEN it must have come from path 1. Similarly, IF it were detected in detector 2, then it came from path 2." In other words, he accepts the existence of an interference pattern but rejects the existence of which-way information.
  • Luboš Motl, Former assistant professor of physics, Harvard University.
    Motl's criticism, published in his blog, is based on an analysis of Afshar's actual setup, instead of proposing a different experiment like Unruh and Kastner. In contrast to Unruh and Kastner, he believes that which-way information always exists, but argues that the measured contrast of the interference pattern is actually very low: "Because this signal (disruption) from the second, middle picture is small (equivalently, it only affects a very small portion of the photons), the contrast V is also very small, and goes to zero for infinitely thin wires." He also argues that the experiment can be understood with classical electrodynamics and has "nothing to do with quantum mechanics".
  • Ole Steuernagel, School of Physics, Astronomy and Mathematics, University of Hertfordshire, UK.
    Steuernagel makes a quantitative analysis of the various transmitted, refracted, and reflected modes in a setup that differs only slightly from Afshar's. He concludes that the Englert-Greenberger duality relation is strictly satisfied, and in particular that the fringe visibility for thin wires is small. Like some of the other critics, he emphasizes that inferring an interference pattern is not the same as measuring one: "Finally, the greatest weakness in the analysis given by Afshar is the inference that an interference pattern must be present."
  • Andrew Knight, Department of Physics, New York University
    Argues that Afshar's claim to violate complementarity is a simple logical inconsistency: by setting up the experiment so that photons are spatially coherent over the two pinholes, the pinholes are necessarily indistinguishable by those photons. “In other words, Afshar et al. claim in one breath to have set up the experiment so that pinholes A and B are inherently indistinguishable by certain photons , and in another breath to have distinguished pinholes A and B with those same photons.”

Specific support

  • Afshar's coauthors Eduardo Flores and Ernst Knoesel criticize Kastner's setup and propose an alternative experimental setup. By removing the lens of Afshar and causing two beams to overlap at a small angle, Flores et al. aimed to show that conservation of momentum guarantee the preservation of which-path information when both pinholes are open. But this experiment is still subject to Motl's objection that the 2 beams have a sub-microscopic diffraction pattern created by the convergence of the beams before the slits; the result would have been the measuring of which slit was open before the wires were ever reached.

See also

References

  1. ^ Chown, Marcus (2004). "Quantum Rebel". New Scientist. 183 (2457): 30–35.(subscription required)
  2. ^ S. S. Afshar (2004). "Waving Copenhagen Good-bye: Were the founders of Quantum Mechanics wrong?". Harvard Seminar Announcement. Archived from the original on 2012-03-05. Retrieved 2013-12-01.
  3. ^ S. S. Afshar; E. Flores; K. F. McDonald; E. Knoesel (2007). "Paradox in wave-particle duality". Foundations of Physics. 37 (2): 295–305. arXiv:quant-ph/0702188. Bibcode:2007FoPh...37..295A. doi:10.1007/s10701-006-9102-8. S2CID 2161197.
  4. ^ S. S. Afshar (2005). Roychoudhuri, Chandrasekhar; Creath, Katherine (eds.). "Violation of the principle of complementarity, and its implications". Proceedings of SPIE. The Nature of Light: What Is a Photon?. 5866: 229–244. arXiv:quant-ph/0701027. Bibcode:2005SPIE.5866..229A. doi:10.1117/12.638774. S2CID 119375418.
  5. S. S. Afshar (2006). "Violation of Bohr's complementarity: One slit or both?". AIP Conference Proceedings. 810: 294–299. arXiv:quant-ph/0701039. Bibcode:2006AIPC..810..294A. doi:10.1063/1.2158731. S2CID 117905639.
  6. J. Zheng; C. Zheng (2011). "Variant simulation system using quaternion structures". Journal of Modern Optics. 59 (5): 484. Bibcode:2012JMOp...59..484Z. doi:10.1080/09500340.2011.636152. S2CID 121934786.
  7. Georgiev, Danko (2012-01-26). "Quantum Histories and Quantum Complementarity". ISRN Mathematical Physics. 2012: 1–37. doi:10.5402/2012/327278. ISSN 2090-4681.
  8. ^ R. Kastner (2005). "Why the Afshar experiment does not refute complementarity?". Studies in History and Philosophy of Modern Physics. 36 (4): 649–658. arXiv:quant-ph/0502021. Bibcode:2005SHPMP..36..649K. doi:10.1016/j.shpsb.2005.04.006. S2CID 119438183.
  9. ^ O. Steuernagel (2007). "Afshar's experiment does not show a violation of complementarity". Foundations of Physics. 37 (9): 1370. arXiv:quant-ph/0512123. Bibcode:2007FoPh...37.1370S. doi:10.1007/s10701-007-9153-5. S2CID 53056142.
  10. ^ V. Jacques; et al. (2008). "Illustration of quantum complementarity using single photons interfering on a grating". New Journal of Physics. 10 (12): 123009. arXiv:0807.5079. Bibcode:2008NJPh...10l3009J. doi:10.1088/1367-2630/10/12/123009. S2CID 2627030.
  11. D. D. Georgiev (2012). "Quantum histories and quantum complementarity". ISRN Mathematical Physics. 2012: 327278. doi:10.5402/2012/327278.
  12. "Institute for Radiation-Induced Mass Studies (IRIMS)". irims.org. Retrieved 2023-09-21.
  13. Afshar's Quantum Bomshell Science Friday
  14. J. G. Cramer (2004). "Bohr is still wrong". New Scientist. 183 (2461): 26.
  15. Chown, Marcus (2007). "Quantum rebel wins over doubters". New Scientist. 197 (2591): 13.(subscription required)
  16. Wheeler, John (1978). Mathematical foundations of quantum theory. Elsevier. pp. 9–48.
  17. R. E. Kastner (2006). "The Afshar Experiment and Complementarity". APS Meeting, March 13–17, Baltimore, Maryland: 40011. Bibcode:2006APS..MARD40011K.
  18. D. Reitzner (2007). "Comment on Afshar's experiments". arXiv:quant-ph/0701152.
  19. W. Unruh (2004). "Shahriar Afshar – Quantum Rebel?".
  20. L. Motl (2004). "Violation of complementarity?".
  21. Andrew Knight (2020). "No Paradox in Wave-Particle Duality". Foundations of Physics. 50 (11): 1723–1727. arXiv:2006.05315. Bibcode:2020FoPh...50.1723K. doi:10.1007/s10701-020-00379-9. S2CID 219559143.
  22. E. Flores and E. Knoesel (2007). "Why Kastner analysis does not apply to a modified Afshar experiment". In Roychoudhuri, Chandrasekhar; Kracklauer, Al F; Creath, Katherine (eds.). The Nature of Light: What Are Photons?. Vol. 6664. pp. 66640O. arXiv:quant-ph/0702210. doi:10.1117/12.730965. S2CID 119028739.
  23. J. G. Cramer (2005). "A farewell to Copenhagen?". Analog Science Fiction and Fact. Archived from the original on 2004-12-08. Retrieved 2004-12-21.
  24. Cramer, JG (2015). The Quantum Handshake: Entanglement, Nonlocality and Transactions. Springer Verlag. pp. 111–112. ISBN 978-3-319-24642-0.
Quantum mechanics
Background
Fundamentals
Formulations
Equations
Interpretations
Experiments
Science
Technology
Extensions
Related
Categories:
Afshar experiment: Difference between revisions Add topic