Misplaced Pages

Option type: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 14:42, 9 June 2022 editDarthKitty (talk | contribs)287 edits Nim: add fold-esque example for parity with other sectionsTag: 2017 wikitext editor← Previous edit Latest revision as of 16:25, 15 December 2024 edit undo31.200.18.182 (talk) why was this even here in the first placeTag: Manual revert 
(31 intermediate revisions by 13 users not shown)
Line 6: Line 6:
}} }}


In ]s (especially ] languages) and ], an '''option type''' or '''maybe type''' is a ] that represents encapsulation of an optional value; e.g., it is used as the return type of functions which may or may not return a meaningful value when they are applied. It consists of a constructor which either is empty (often named <code>None</code> or <code>Nothing</code>), or which encapsulates the original data type <code>A</code> (often written <code>Just A</code> or <code>Some A</code>). In ]s (especially ] languages) and ], an '''option type''' or '''maybe type''' is a ] that represents encapsulation of an optional value; e.g., it is used as the return type of functions which may or may not return a meaningful value when they are applied. It consists of a constructor which either is empty (often named <code>None</code> or <code>Nothing</code>), or which encapsulates the original data type <code>A</code> (often written <code>Just A</code> or <code>Some A</code>).


A distinct, but related concept outside of functional programming, which is popular in ], is called ]s (often expressed as <code>A?</code>). The core difference between option types and nullable types is that option types support nesting (<code>Maybe (Maybe A)</code> ≠ <code>Maybe A</code>), while nullable types do not (<code>String??</code> = <code>String?</code>). A distinct, but related concept outside of functional programming, which is popular in ], is called ]s (often expressed as <code>A?</code>). The core difference between option types and nullable types is that option types support nesting (e.g. <code>Maybe (Maybe String)</code> ≠ <code>Maybe String</code>), while nullable types do not (e.g. <code>String??</code> = <code>String?</code>).


==Theoretical aspects== ==Theoretical aspects==
Line 30: Line 30:


The monadic nature of the option type is useful for efficiently tracking failure and errors.<ref>{{cite web|url=https://www.youtube.com/watch?v=t1e8gqXLbsU |archive-url=https://ghostarchive.org/varchive/youtube/20211220/t1e8gqXLbsU |archive-date=2021-12-20 |url-status=live|title=What is a Monad?|last=Hutton|first=Graham|date=Nov 25, 2017|website=Computerphile Youtube|access-date=Aug 18, 2019}}{{cbignore}}</ref> The monadic nature of the option type is useful for efficiently tracking failure and errors.<ref>{{cite web|url=https://www.youtube.com/watch?v=t1e8gqXLbsU |archive-url=https://ghostarchive.org/varchive/youtube/20211220/t1e8gqXLbsU |archive-date=2021-12-20 |url-status=live|title=What is a Monad?|last=Hutton|first=Graham|date=Nov 25, 2017|website=Computerphile Youtube|access-date=Aug 18, 2019}}{{cbignore}}</ref>

==Names and definitions==
In different programming languages, the option type has various names and definitions.

* In ], it is named {{code|2=agda|Maybe}} with variants {{code|2=agda|nothing}} and {{code|2=agda|just a}}.
* In ], it is defined as {{code|2=coq|1=Inductive option (A:Type) : Type := {{!}} Some : A -> option A {{!}} None : option A. }}.
* In ], it is named {{code|Maybe|elm}}, and defined as {{code|2=elm|1=type Maybe a = Just a {{!}} Nothing}}.<ref>{{cite web |title=Maybe · An Introduction to Elm |url=https://guide.elm-lang.org/error_handling/maybe.html |website=guide.elm-lang.org}}</ref>
* In ], it is named {{code|Maybe|haskell}}, and defined as {{code|2=haskell|1=data Maybe a = Nothing {{!}} Just a}}.
* In ], it is defined as {{code|2=idris|1=data Maybe a = Nothing {{!}} Just a}}.
* In ], it is defined as {{code|2=ocaml|1=type 'a option = None {{!}} Some of 'a}}.
* In ], it is denoted (via ]) as {{code|2=python|1=typing.Optional}}, or {{code|2=python|1=T {{!}} None}} in 3.10 and above.
* In ], it is defined as {{code|2=rust|enum Option<T> { None, Some(T) } }}.
* In ], it is defined as {{code|2=scala|1=sealed abstract class Option}}, a type extended by {{code|2=scala|1=final case class Some(value: A)}} and {{code|2=scala|1=case object None}}.
* In ], it is defined as {{code|2=sml|1=datatype 'a option = NONE {{!}} SOME of 'a}}.
* In ], it is defined as {{code|2=swift|enum Optional<T> { case none, some(T) } }} but is generally written as {{code|2=swift|T?}}.<ref>{{cite web|title=Apple Developer Documentation|url=https://developer.apple.com/documentation/swift/optional|access-date=2020-09-06|website=developer.apple.com}}</ref>


== Examples == == Examples ==
Line 58: Line 43:
- Nullable{T} in Julia - Nullable{T} in Julia
- Nullable types (T?) in Kotlin - Nullable types (T?) in Kotlin
- typing.Optional (T | None) in Python
- Definiteness (:D) in Raku - Definiteness (:D) in Raku
--> -->

=== Agda ===
{{Expand section|with=example usage|date=July 2022}}
{{Further|Agda (programming language)}}

In Agda, the option type is named {{code|2=agda|Maybe}} with variants {{code|2=agda|nothing}} and {{code|2=agda|just a}}.

=== ATS ===
{{Further|ATS (programming language)}}

In ATS, the option type is defined as

<syntaxhighlight lang="ocaml">
datatype option_t0ype_bool_type (a: t@ype+, bool) =
| Some(a, true) of a
| None(a, false)
stadef option = option_t0ype_bool_type
typedef Option(a: t@ype) = option(a, b)
</syntaxhighlight>

<syntaxhighlight lang="ocaml">
#include "share/atspre_staload.hats"

fn show_value (opt: Option int): string =
case+ opt of
| None() => "No value"
| Some(s) => tostring_int s

implement main0 (): void = let
val full = Some 42
and empty = None
in
println!("show_value full → ", show_value full);
println!("show_value empty → ", show_value empty);
end
</syntaxhighlight>

<syntaxhighlight lang="output">
show_value full → 42
show_value empty → No value
</syntaxhighlight>

=== C++ ===
Since C++17, the option type is defined in the standard library as {{code|2=C++|1=template<typename T> std::optional<T> }}.

=== Coq ===
{{Expand section|with=example usage|date=July 2022}}
{{Further|Coq (software)}}

In Coq, the option type is defined as {{code|2=coq|1=Inductive option (A:Type) : Type := {{!}} Some : A -> option A {{!}} None : option A. }}.

=== Elm ===
{{Expand section|with=example usage|date=July 2022}}
{{Further|Elm (programming language)}}

In Elm, the option type is defined as {{code|2=elm|1=type Maybe a = Just a {{!}} Nothing}}.<ref>{{cite web |title=Maybe · An Introduction to Elm |url=https://guide.elm-lang.org/error_handling/maybe.html |website=guide.elm-lang.org}}</ref>


=== F# === === F# ===
{{Further|F Sharp (programming language)}}
<syntaxhighlight lang="fsharp">
// This function uses pattern matching to deconstruct `option`s
let compute_v1 = function
| Some x -> sprintf "The value is: %d" x
| None -> "No value"


In F#, the option type is defined as {{code|2=fsharp|1=type 'a option = None {{!}} Some of 'a}}.<ref>{{Cite web |title=Options |url=https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/options |access-date=2024-10-08 |website=fsharp.org}}</ref>
// This function uses the built-in `fold` function

let compute_v2 =
<syntaxhighlight lang="fsharp">
let showValue =
Option.fold (fun _ x -> sprintf "The value is: %d" x) "No value" Option.fold (fun _ x -> sprintf "The value is: %d" x) "No value"


// Define variables that are `option`s of type `int`
let full = Some 42 let full = Some 42
let empty = None let empty = None


// compute_v1 full -> The value is: 42 showValue full |> printfn "showValue full -> %s"
compute_v1 full |> printfn "compute_v1 full -> %s" showValue empty |> printfn "showValue empty -> %s"
</syntaxhighlight>

// compute_v1 empty -> No value
compute_v1 empty |> printfn "compute_v1 empty -> %s"


<syntaxhighlight lang="output">
// compute_v2 full -> The value is: 42
compute_v2 full |> printfn "compute_v2 full -> %s" showValue full -> The value is: 42
showValue empty -> No value

// compute_v2 empty -> No value
compute_v2 empty |> printfn "compute_v2 empty -> %s"
</syntaxhighlight> </syntaxhighlight>


=== Haskell === === Haskell ===
{{Further|Haskell (programming language)}}
<syntaxhighlight lang="haskell">
-- This function uses pattern matching to deconstruct `Maybe`s
computeV1 :: Maybe Int -> String
computeV1 (Just x) = "The value is: " ++ show x
computeV1 Nothing = "No value"


In Haskell, the option type is defined as {{code|2=haskell|1=data Maybe a = Nothing {{!}} Just a}}.<ref>{{Cite web |title=6 Predefined Types and Classes |url=https://www.haskell.org/onlinereport/haskell2010/haskellch6.html#x13-1250006.1.8 |access-date=2022-06-15 |website=www.haskell.org}}</ref>
-- This function uses the built-in `foldl` function

computeV2 :: Maybe Int -> String
<syntaxhighlight lang="haskell">
computeV2 = foldl (\_ x -> "The value is: " ++ show x) "No value"
showValue :: Maybe Int -> String
showValue = foldl (\_ x -> "The value is: " ++ show x) "No value"


main :: IO () main :: IO ()
main = do main = do
-- Define variables that are `Maybe`s of type `Int`
let full = Just 42 let full = Just 42
let empty = Nothing let empty = Nothing


-- computeV1 full -> The value is: 42 putStrLn $ "showValue full -> " ++ showValue full
putStrLn $ "computeV1 full -> " ++ computeV1 full putStrLn $ "showValue empty -> " ++ showValue empty
</syntaxhighlight>


<syntaxhighlight lang="output">
-- computeV1 full -> No value
showValue full -> The value is: 42
putStrLn $ "computeV1 empty -> " ++ computeV1 empty
showValue empty -> No value
</syntaxhighlight>


=== Idris ===
-- computeV2 full -> The value is: 42
{{Further|Idris (programming language)}}
putStrLn $ "computeV2 full -> " ++ computeV2 full


In Idris, the option type is defined as {{code|2=idris|1=data Maybe a = Nothing {{!}} Just a}}.
-- computeV2 full -> No value

putStrLn $ "computeV2 empty -> " ++ computeV2 empty
<syntaxhighlight lang="idris">
showValue : Maybe Int -> String
showValue = foldl (\_, x => "The value is " ++ show x) "No value"

main : IO ()
main = do
let full = Just 42
let empty = Nothing

putStrLn $ "showValue full -> " ++ showValue full
putStrLn $ "showValue empty -> " ++ showValue empty
</syntaxhighlight>

<syntaxhighlight lang="output">
showValue full -> The value is: 42
showValue empty -> No value
</syntaxhighlight> </syntaxhighlight>


=== Nim === === Nim ===
{{Expand section|with=the definition|date=July 2022}}
{{Further|Nim (programming language)}}

<syntaxhighlight lang="nim"> <syntaxhighlight lang="nim">
import std/options import std/options


proc showValue(opt: Option): string =
# This proc uses the built-in `isSome` and `get` procs to deconstruct `Option`s
proc computeV1(opt: Option): string = opt.map(proc (x: int): string = "The value is: " & $x).get("No value")
if opt.isSome:
"The Value is: " & $opt.get
else:
"No value"


# This proc uses the built-in `map` and `get` procs
proc computeV2(opt: Option): string =
proc helper(x: int): string =
"The value is: " & $x

opt.map(helper).get("No value")

# Define variables that are `Optional`s of type `Int`
let let
full = some(42) full = some(42)
empty = none(int) empty = none(int)


# computeV1(full) -> The Value is: 42 echo "showValue(full) -> ", showValue(full)
echo "computeV1(full) -> ", computeV1(full) echo "showValue(empty) -> ", showValue(empty)
</syntaxhighlight>


<syntaxhighlight lang="output">
# computeV1(empty) -> No value
showValue(full) -> The Value is: 42
echo "computeV2(empty) -> ", computeV2(empty)
showValue(empty) -> No value

# computeV2(full) -> The Value is: 42
echo "computeV2(full) -> ", computeV2(full)

# computeV2(empty) -> No value
echo "computeV2(empty) -> ", computeV2(empty)
</syntaxhighlight> </syntaxhighlight>


=== OCaml === === OCaml ===
{{Further|OCaml}}
] implements <code>Option</code> as a parameterized variant type. <code>Option</code>s are constructed and deconstructed as follows:


In OCaml, the option type is defined as {{code|2=ocaml|1=type 'a option = None {{!}} Some of 'a}}.<ref>{{Cite web |title=OCaml library : Option |url=https://v2.ocaml.org/releases/4.13/api/Option.html#TYPEt |access-date=2022-06-15 |website=v2.ocaml.org}}</ref>
<syntaxhighlight lang="ocaml">
(* This function uses pattern matching to deconstruct `option`s *)
let compute_v1 = function
| Some x -> "The value is: " ^ string_of_int x
| None -> "No value"


<syntaxhighlight lang="ocaml">
(* This function uses the built-in `fold` function *)
let compute_v2 = let show_value =
Option.fold ~none:"No value" ~some:(fun x -> "The value is: " ^ string_of_int x) Option.fold ~none:"No value" ~some:(fun x -> "The value is: " ^ string_of_int x)


let () = let () =
(* Define variables that are `option`s of type `int` *)
let full = Some 42 in let full = Some 42 in
let empty = None in let empty = None in


(* compute_v1 full -> The value is: 42 *) print_endline ("show_value full -> " ^ show_value full);
print_endline ("compute_v1 full -> " ^ compute_v1 full); print_endline ("show_value empty -> " ^ show_value empty)
</syntaxhighlight>


<syntaxhighlight lang="output">
(* compute_v1 empty -> No value *)
show_value full -> The value is: 42
print_endline ("compute_v1 empty -> " ^ compute_v1 empty);
show_value empty -> No value

(* compute_v2 full -> The value is: 42 *)
print_endline ("compute_v2 full -> " ^ compute_v2 full);

(* compute_v2 empty -> No value *)
print_endline ("compute_v2 empty -> " ^ compute_v2 empty)
</syntaxhighlight> </syntaxhighlight>


=== Rust === === Rust ===
{{Further|Rust (programming language)}}
<syntaxhighlight lang="rust">
// This function uses a `match` expression to deconstruct `Option`s
fn compute_v1(opt: Option<i32>) -> String {
match opt {
Some(x) => format!("The value is: {}", x),
None => "No value".to_owned(),
}
}


In Rust, the option type is defined as {{code|2=rust|enum Option<T> { None, Some(T) } }}.<ref>{{cite web |url=https://doc.rust-lang.org/core/option/enum.Option.html |title=Option in core::option - Rust |date=2022-05-18 |access-date=2022-06-15 |website=doc.rust-lang.org}}</ref>
// This function uses an `if let` expression to deconstruct `Option`s
fn compute_v2(opt: Option<i32>) -> String {
if let Some(x) = opt {
format!("The value is: {}", x)
} else {
"No value".to_owned()
}
}


<syntaxhighlight lang="rust">
// This function uses the built-in `map_or` method
fn compute_v3(opt: Option<i32>) -> String { fn show_value(opt: Option<i32>) -> String {
opt.map_or("No value".to_owned(), |x| format!("The value is: {}", x)) opt.map_or("No value".to_owned(), |x| format!("The value is: {}", x))
} }


fn main() { fn main() {
// Define variables that are `Option`s of type `i32`
let full = Some(42); let full = Some(42);
let empty: Option<i32> = None; let empty = None;

// compute_v1(&full) -> The value is: 42
println!("compute_v1(&full) -> {}", compute_v1(full));

// compute_v1(&empty) -> No value
println!("compute_v1(&empty) -> {}", compute_v1(empty));

// compute_v2(&full) -> The value is: 42
println!("compute_v2(&full) -> {}", compute_v2(full));

// compute_v2(&empty) -> No value
println!("compute_v2(&empty) -> {}", compute_v2(empty));

// compute_v3(&full) -> The value is: 42
println!("compute_v3(&full) -> {}", compute_v3(full));


println!("show_value(full) -> {}", show_value(full));
// compute_v3(&empty) -> No value
println!("compute_v3(&empty) -> {}", compute_v3(empty)); println!("show_value(empty) -> {}", show_value(empty));
} }
</syntaxhighlight>

<syntaxhighlight lang="output">
show_value(full) -> The value is: 42
show_value(empty) -> No value
</syntaxhighlight> </syntaxhighlight>


=== Scala === === Scala ===
{{Further|Scala (programming language)}}
] implements <code>Option</code> as a parameterized type, so a variable can be an <code>Option</code>, accessed as follows:<ref name="OderskySpoon2008">{{cite book|author1=Martin Odersky|author2=Lex Spoon|author3=Bill Venners|title=Programming in Scala|url=https://books.google.com/books?id=MFjNhTjeQKkC&pg=PA283|access-date=6 September 2011|year=2008|publisher=Artima Inc|isbn=978-0-9815316-0-1|pages=282–284}}</ref>


In Scala, the option type is defined as {{code|2=scala|1=sealed abstract class Option}}, a type extended by {{code|2=scala|1=final case class Some(value: A)}} and {{code|2=scala|1=case object None}}.
<syntaxhighlight lang="scala">
object Main {
// This function uses pattern matching to deconstruct `Option`s
def computeV1(opt: Option): String =
opt match {
case Some(x) => s"The value is: $x"
case None => "No value"
}


<syntaxhighlight lang="scala">
// This function uses the built-in `fold` method
object Main:
def computeV2(opt: Option): String =
def showValue(opt: Option): String =
opt.fold("No value")(x => s"The value is: $x") opt.fold("No value")(x => s"The value is: $x")


def main(args: Array): Unit = { def main(args: Array): Unit =
// Define variables that are `Option`s of type `Int`
val full = Some(42) val full = Some(42)
val empty: Option = None val empty = None


// computeV1(full) -> The value is: 42 println(s"showValue(full) -> ${showValue(full)}")
println(s"computeV1(full) -> ${computeV1(full)}") println(s"showValue(empty) -> ${showValue(empty)}")


// computeV1(empty) -> No value
println(s"computeV1(empty) -> ${computeV1(empty)}")


</syntaxhighlight>
// computeV2(full) -> The value is: 42
println(s"computeV2(full) -> ${computeV2(full)}")


<syntaxhighlight lang="output">
// computeV2(empty) -> No value
showValue(full) -> The value is: 42
println(s"computeV2(empty) -> ${computeV2(empty)}")
showValue(empty) -> No value
}
}
</syntaxhighlight> </syntaxhighlight>


=== Standard ML ===
Two main ways to use an <code>Option</code> value exist. The first, not the best, is the ], as in the first example. The second, the best practice is a monadic approach, as in the second example. In this way, a program is safe, as it can generate no exception or error (e.g., by trying to obtain the value of an <code>Option</code> variable that is equal to <code>None</code>). Thus, it essentially works as a type-safe alternative to the null value.
{{Expand section|with=example usage|date=July 2022}}
{{Further|Standard ML}}

In Standard ML, the option type is defined as {{code|2=sml|1=datatype 'a option = NONE {{!}} SOME of 'a}}.


=== Swift === === Swift ===
{{Further|Swift (programming language)}}
<syntaxhighlight lang="swift">
// This function uses a `switch` statement to deconstruct `Optional`s
func computeV1(_ opt: Int?) -> String {
switch opt {
case .some(let x):
return "The value is: \(x)"
case .none:
return "No value"
}
}


In Swift, the option type is defined as {{code|2=swift|enum Optional<T> { case none, some(T) } }} but is generally written as {{code|2=swift|T?}}.<ref>{{cite web|title=Apple Developer Documentation|url=https://developer.apple.com/documentation/swift/optional|access-date=2020-09-06|website=developer.apple.com}}</ref>
// This function uses optional binding to deconstruct `Optional`s
func computeV2(_ opt: Int?) -> String {
if let x = opt {
return "The value is: \(x)"
} else {
return "No value"
}
}


<syntaxhighlight lang="swift">
// This function uses the built-in `map(_:)` and `??(_:_:)` methods
func computeV3(_ opt: Int?) -> String { func showValue(_ opt: Int?) -> String {
return opt.map { "The value is: \($0)" } ?? "No value" return opt.map { "The value is: \($0)" } ?? "No value"
} }


let full = 42
// Define variables that are `Optional`s of type `Int`
let full: Int? = 42
let empty: Int? = nil let empty: Int? = nil


// computeV1(full) -> The value is: 42 print("showValue(full) -> \(showValue(full))")
print("computeV1(full) -> \(computeV1(full))") print("showValue(empty) -> \(showValue(empty))")
</syntaxhighlight>


<syntaxhighlight lang="output">
// computeV1(empty) -> No value
showValue(full) -> The value is: 42
print("computeV1(empty) -> \(computeV1(empty))")
showValue(empty) -> No value
</syntaxhighlight>


=== Zig ===
// computeV2(full) -> The value is: 42
{{Further|Zig (programming language)}}
print("computeV2(full) -> \(computeV2(full))")


In Zig, add ? before the type name like <code>?i32</code> to make it an optional type.
// computeV2(empty) -> No value
print("computeV2(empty) -> \(computeV2(empty))")


Payload <var>n</var> can be captured in an ''if'' or ''while'' statement, such as {{code|2=zig|if (opt) {{!}}n{{!}} { ... } else { ... } }}, and an ''else'' clause is evaluated if it is <code>null</code>.
// computeV3(full) -> The value is: 42

print("computeV3(full) -> \(computeV3(full))")
<syntaxhighlight lang="zig">
const std = @import("std");

fn showValue(allocator: std.mem.Allocator, opt: ?i32) !u8 {
return if (opt) |n|
std.fmt.allocPrint(allocator, "The value is: {}", .{n})
else
allocator.dupe(u8, "No value");
}

pub fn main() !void {
// Set up an allocator, and warn if we forget to free any memory.
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
defer std.debug.assert(gpa.deinit() == .ok);
const allocator = gpa.allocator();

// Prepare the standard output stream.
const stdout = std.io.getStdOut().writer();

// Perform our example.
const full = 42;
const empty = null;

const full_msg = try showValue(allocator, full);
defer allocator.free(full_msg);
try stdout.print("showValue(allocator, full) -> {s}\n", .{full_msg});

const empty_msg = try showValue(allocator, empty);
defer allocator.free(empty_msg);
try stdout.print("showValue(allocator, empty) -> {s}\n", .{empty_msg});
}
</syntaxhighlight>


<syntaxhighlight lang="output">
// computeV3(empty) -> No value
showValue(allocator, full) -> The value is: 42
print("computeV3(empty) -> \(computeV3(empty))")
showValue(allocator, empty) -> No value
</syntaxhighlight> </syntaxhighlight>


Line 328: Line 343:
* ] * ]
* ] * ]
* ]


== References == == References ==

Latest revision as of 16:25, 15 December 2024

Encapsulation of an optional value in programming or type theory For families of option contracts in finance, see Option style.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Option type" – news · newspapers · books · scholar · JSTOR (July 2019) (Learn how and when to remove this message)
This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (July 2019) (Learn how and when to remove this message)
(Learn how and when to remove this message)

In programming languages (especially functional programming languages) and type theory, an option type or maybe type is a polymorphic type that represents encapsulation of an optional value; e.g., it is used as the return type of functions which may or may not return a meaningful value when they are applied. It consists of a constructor which either is empty (often named None or Nothing), or which encapsulates the original data type A (often written Just A or Some A).

A distinct, but related concept outside of functional programming, which is popular in object-oriented programming, is called nullable types (often expressed as A?). The core difference between option types and nullable types is that option types support nesting (e.g. Maybe (Maybe String)Maybe String), while nullable types do not (e.g. String?? = String?).

Theoretical aspects

This section has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This section may contain information not important or relevant to the article's subject. Please help improve this section. (July 2019) (Learn how and when to remove this message)
This section possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (August 2019) (Learn how and when to remove this message)
(Learn how and when to remove this message)

In type theory, it may be written as: A ? = A + 1 {\displaystyle A^{?}=A+1} . This expresses the fact that for a given set of values in A {\displaystyle A} , an option type adds exactly one additional value (the empty value) to the set of valid values for A {\displaystyle A} . This is reflected in programming by the fact that in languages having tagged unions, option types can be expressed as the tagged union of the encapsulated type plus a unit type.

In the Curry–Howard correspondence, option types are related to the annihilation law for ∨: x∨1=1.

An option type can also be seen as a collection containing either one or zero elements.

The option type is also a monad where:

return = Just -- Wraps the value into a maybe
Nothing  >>= f = Nothing -- Fails if the previous monad fails
(Just x) >>= f = f x     -- Succeeds when both monads succeed

The monadic nature of the option type is useful for efficiently tracking failure and errors.

Examples

Agda

This section needs expansion with: example usage. You can help by adding to it. (July 2022)
Further information: Agda (programming language)

In Agda, the option type is named Maybe with variants nothing and just a.

ATS

Further information: ATS (programming language)

In ATS, the option type is defined as

datatype option_t0ype_bool_type (a: t@ype+, bool) = 
	| Some(a, true) of a
 	| None(a, false)
stadef option = option_t0ype_bool_type
typedef Option(a: t@ype) =  option(a, b)
#include "share/atspre_staload.hats"
fn show_value (opt: Option int): string =
	case+ opt of
	| None() => "No value"
	| Some(s) => tostring_int s
implement main0 (): void = let
	val full = Some 42
	and empty = None
in
	println!("show_value full → ", show_value full);
	println!("show_value empty → ", show_value empty);
end
show_value full → 42
show_value empty → No value

C++

Since C++17, the option type is defined in the standard library as template<typename T> std::optional<T>.

Coq

This section needs expansion with: example usage. You can help by adding to it. (July 2022)
Further information: Coq (software)

In Coq, the option type is defined as Inductive option (A:Type) : Type := | Some : A -> option A | None : option A..

Elm

This section needs expansion with: example usage. You can help by adding to it. (July 2022)
Further information: Elm (programming language)

In Elm, the option type is defined as type Maybe a = Just a | Nothing.

F#

Further information: F Sharp (programming language)

In F#, the option type is defined as type 'a option = None | Some of 'a.

let showValue =
    Option.fold (fun _ x -> sprintf "The value is: %d" x) "No value"
let full = Some 42
let empty = None
showValue full |> printfn "showValue full -> %s"
showValue empty |> printfn "showValue empty -> %s"
showValue full -> The value is: 42
showValue empty -> No value

Haskell

Further information: Haskell (programming language)

In Haskell, the option type is defined as data Maybe a = Nothing | Just a.

showValue :: Maybe Int -> String
showValue = foldl (\_ x -> "The value is: " ++ show x) "No value"
main :: IO ()
main = do
    let full = Just 42
    let empty = Nothing
    putStrLn $ "showValue full -> " ++ showValue full
    putStrLn $ "showValue empty -> " ++ showValue empty
showValue full -> The value is: 42
showValue empty -> No value

Idris

Further information: Idris (programming language)

In Idris, the option type is defined as data Maybe a = Nothing | Just a.

showValue : Maybe Int -> String
showValue = foldl (\_, x => "The value is " ++ show x) "No value"
main : IO ()
main = do
    let full = Just 42
    let empty = Nothing
    putStrLn $ "showValue full -> " ++ showValue full
    putStrLn $ "showValue empty -> " ++ showValue empty
showValue full -> The value is: 42
showValue empty -> No value

Nim

This section needs expansion with: the definition. You can help by adding to it. (July 2022)
Further information: Nim (programming language)
import std/options
proc showValue(opt: Option): string =
  opt.map(proc (x: int): string = "The value is: " & $x).get("No value")
let
  full = some(42)
  empty = none(int)
echo "showValue(full) -> ", showValue(full)
echo "showValue(empty) -> ", showValue(empty)
showValue(full) -> The Value is: 42
showValue(empty) -> No value

OCaml

Further information: OCaml

In OCaml, the option type is defined as type 'a option = None | Some of 'a.

let show_value =
  Option.fold ~none:"No value" ~some:(fun x -> "The value is: " ^ string_of_int x)
let () =
  let full = Some 42 in
  let empty = None in
  print_endline ("show_value full -> " ^ show_value full);
  print_endline ("show_value empty -> " ^ show_value empty)
show_value full -> The value is: 42
show_value empty -> No value

Rust

Further information: Rust (programming language)

In Rust, the option type is defined as enum Option<T> { None, Some(T) }.

fn show_value(opt: Option<i32>) -> String {
    opt.map_or("No value".to_owned(), |x| format!("The value is: {}", x))
}
fn main() {
    let full = Some(42);
    let empty = None;
    println!("show_value(full) -> {}", show_value(full));
    println!("show_value(empty) -> {}", show_value(empty));
}
show_value(full) -> The value is: 42
show_value(empty) -> No value

Scala

Further information: Scala (programming language)

In Scala, the option type is defined as sealed abstract class Option, a type extended by final case class Some(value: A) and case object None.

object Main:
  def showValue(opt: Option): String =
    opt.fold("No value")(x => s"The value is: $x")
  def main(args: Array): Unit =
    val full = Some(42)
    val empty = None
    println(s"showValue(full) -> ${showValue(full)}")
    println(s"showValue(empty) -> ${showValue(empty)}")
showValue(full) -> The value is: 42
showValue(empty) -> No value

Standard ML

This section needs expansion with: example usage. You can help by adding to it. (July 2022)
Further information: Standard ML

In Standard ML, the option type is defined as datatype 'a option = NONE | SOME of 'a.

Swift

Further information: Swift (programming language)

In Swift, the option type is defined as enum Optional<T> { case none, some(T) } but is generally written as T?.

func showValue(_ opt: Int?) -> String {
    return opt.map { "The value is: \($0)" } ?? "No value"
}
let full = 42
let empty: Int? = nil
print("showValue(full) -> \(showValue(full))")
print("showValue(empty) -> \(showValue(empty))")
showValue(full) -> The value is: 42
showValue(empty) -> No value

Zig

Further information: Zig (programming language)

In Zig, add ? before the type name like ?i32 to make it an optional type.

Payload n can be captured in an if or while statement, such as if (opt) |n| { ... } else { ... }, and an else clause is evaluated if it is null.

const std = @import("std");
fn showValue(allocator: std.mem.Allocator, opt: ?i32) !u8 {
    return if (opt) |n|
        std.fmt.allocPrint(allocator, "The value is: {}", .{n})
    else
        allocator.dupe(u8, "No value");
}
pub fn main() !void {
    // Set up an allocator, and warn if we forget to free any memory.
    var gpa = std.heap.GeneralPurposeAllocator(.{}){};
    defer std.debug.assert(gpa.deinit() == .ok);
    const allocator = gpa.allocator();
    // Prepare the standard output stream.
    const stdout = std.io.getStdOut().writer();
    // Perform our example.
    const full = 42;
    const empty = null;
    const full_msg = try showValue(allocator, full);
    defer allocator.free(full_msg);
    try stdout.print("showValue(allocator, full) -> {s}\n", .{full_msg});
    const empty_msg = try showValue(allocator, empty);
    defer allocator.free(empty_msg);
    try stdout.print("showValue(allocator, empty) -> {s}\n", .{empty_msg});
}
showValue(allocator, full) -> The value is: 42 
showValue(allocator, empty) -> No value

See also

References

  1. Milewski, Bartosz (2015-01-13). "Simple Algebraic Data Types". Bartosz Milewski's Programming Cafe. Sum types. "We could have encoded Maybe as: data Maybe a = Either () a". Archived from the original on 2019-08-18. Retrieved 2019-08-18.
  2. "A Fistful of Monads - Learn You a Haskell for Great Good!". www.learnyouahaskell.com. Retrieved 2019-08-18.
  3. Hutton, Graham (Nov 25, 2017). "What is a Monad?". Computerphile Youtube. Archived from the original on 2021-12-20. Retrieved Aug 18, 2019.
  4. "Maybe · An Introduction to Elm". guide.elm-lang.org.
  5. "Options". fsharp.org. Retrieved 2024-10-08.
  6. "6 Predefined Types and Classes". www.haskell.org. Retrieved 2022-06-15.
  7. "OCaml library : Option". v2.ocaml.org. Retrieved 2022-06-15.
  8. "Option in core::option - Rust". doc.rust-lang.org. 2022-05-18. Retrieved 2022-06-15.
  9. "Apple Developer Documentation". developer.apple.com. Retrieved 2020-09-06.
Data types
Uninterpreted
Numeric
Pointer
Text
Composite
Other
Related
topics
Categories:
Option type: Difference between revisions Add topic