Revision as of 23:58, 2 January 2025 editJJMC89 bot (talk | contribs)Bots1,166,039 editsm Remove {{drafts moved from mainspace}}← Previous edit | Latest revision as of 09:00, 8 January 2025 edit undoCitation bot (talk | contribs)Bots5,457,936 edits Added pmid. | Use this bot. Report bugs. | Suggested by BorgQueen | Linked from User:AlexNewArtBot/GoodSearchResult | #UCB_webform_linked 349/1398 | ||
(4 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Multiple issues| | |||
{{No footnotes|date=January 2025}} | |||
{{AI-generated|date=January 2025}} | {{AI-generated|date=January 2025}} | ||
}} | |||
{{Draft article}} | |||
{{Chembox | {{Chembox | ||
| Verifiedfields = changed | | Verifiedfields = changed | ||
Line 33: | Line 29: | ||
}} | }} | ||
'''EG-2201''' is a ] belonging to the indole-3-carboxamide family. It has been identified as a designer drug and is structurally related to other synthetic cannabinoids, such as ] and ]. It is primarily used illicitly due to its psychoactive effects, which mimic ] (THC), the active ingredient in ]. | '''EG-2201''' is a ] belonging to the indole-3-carboxamide family.<ref>{{Cite journal |last1=Mogler |first1=Lukas |last2=Franz |first2=Florian |last3=Wilde |first3=Maurice |last4=Huppertz |first4=Laura M. |last5=Halter |first5=Sebastian |last6=Angerer |first6=Verena |last7=Moosmann |first7=Bjoern |last8=Auwärter |first8=Volker |date=2018 |title=Phase I metabolism of the carbazole-derived synthetic cannabinoids EG-018, EG-2201, and MDMB-CHMCZCA and detection in human urine samples |url=https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/dta.2398 |journal=Drug Testing and Analysis |language=en |volume=10 |issue=9 |pages=1417–1429 |doi=10.1002/dta.2398 |pmid=29726116 |issn=1942-7611}}</ref> It has been identified as a designer drug and is structurally related to other synthetic cannabinoids, such as ] and ]. It is primarily used illicitly due to its psychoactive effects, which mimic ] (THC), the active ingredient in ].<ref>{{Cite journal |last1=Potts |first1=A. J. |last2=Cano |first2=C. |last3=Thomas |first3=S. H. L. |last4=Hill |first4=S. L. |date=2020-02-01 |title=Synthetic cannabinoid receptor agonists: classification and nomenclature |url=https://www.tandfonline.com/doi/full/10.1080/15563650.2019.1661425 |journal=Clinical Toxicology |language=en |volume=58 |issue=2 |pages=82–98 |doi=10.1080/15563650.2019.1661425 |pmid=31524007 |issn=1556-3650}}</ref> | ||
==Chemical properties== | ==Chemical properties== | ||
Line 48: | Line 44: | ||
==Risks and toxicity== | ==Risks and toxicity== | ||
Limited toxicity studies exist for EG-2201, but related synthetic cannabinoids are associated with seizures, cardiovascular events, and psychiatric disturbances. Its metabolic byproducts may also be toxic. | Limited toxicity studies exist for EG-2201, but related synthetic cannabinoids are associated with seizures, cardiovascular events, and psychiatric disturbances. Its metabolic byproducts may also be toxic.<ref>{{Citation |last1=Banister |first1=Samuel D. |title=The Chemistry and Pharmacology of Synthetic Cannabinoid Receptor Agonist New Psychoactive Substances: Evolution |date=2018 |work=New Psychoactive Substances |volume=252 |pages=191–226 |editor-last=Maurer |editor-first=Hans H. |url=http://link.springer.com/10.1007/164_2018_144 |access-date=2025-01-02 |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/164_2018_144 |isbn=978-3-030-10560-0 |last2=Connor |first2=Mark |pmid=30105473 |editor2-last=Brandt |editor2-first=Simon D.}}</ref> | ||
==See also== | ==See also== | ||
Line 57: | Line 53: | ||
== Sources == | == Sources == | ||
* | |||
* {{Cite journal |last=Mogler |first=Lukas |last2=Franz |first2=Florian |last3=Wilde |first3=Maurice |last4=Huppertz |first4=Laura M. |last5=Halter |first5=Sebastian |last6=Angerer |first6=Verena |last7=Moosmann |first7=Bjoern |last8=Auwärter |first8=Volker |date=2018 |title=Phase I metabolism of the carbazole-derived synthetic cannabinoids EG-018, EG-2201, and MDMB-CHMCZCA and detection in human urine samples |url=https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/dta.2398 |journal=Drug Testing and Analysis |language=en |volume=10 |issue=9 |pages=1417–1429 |doi=10.1002/dta.2398 |issn=1942-7611}} | |||
* {{Cite journal | |
* {{Cite journal |last1=Gaunitz |first1=Franziska |last2=Dahm |first2=Patrick |last3=Mogler |first3=Lukas |last4=Thomas |first4=Andreas |last5=Thevis |first5=Mario |last6=Mercer-Chalmers-Bender |first6=Katja |date=June 2019 |title=In vitro metabolic profiling of synthetic cannabinoids by pooled human liver microsomes, cytochrome P450 isoenzymes, and Cunninghamella elegans and their detection in urine samples |url=http://link.springer.com/10.1007/s00216-019-01837-8 |journal=Analytical and Bioanalytical Chemistry |language=en |volume=411 |issue=16 |pages=3561–3579 |doi=10.1007/s00216-019-01837-8 |pmid=31183523 |issn=1618-2642}} | ||
* | |||
* {{Citation |last=Banister |first=Samuel D. |title=The Chemistry and Pharmacology of Synthetic Cannabinoid Receptor Agonist New Psychoactive Substances: Evolution |date=2018 |work=New Psychoactive Substances |volume=252 |pages=191–226 |editor-last=Maurer |editor-first=Hans H. |url=http://link.springer.com/10.1007/164_2018_144 |access-date=2025-01-02 |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/164_2018_144 |isbn=978-3-030-10560-0 |last2=Connor |first2=Mark |editor2-last=Brandt |editor2-first=Simon D.}} | |||
* | |||
* {{Cite journal |last=Potts |first=A. J. |last2=Cano |first2=C. |last3=Thomas |first3=S. H. L. |last4=Hill |first4=S. L. |date=2020-02-01 |title=Synthetic cannabinoid receptor agonists: classification and nomenclature |url=https://www.tandfonline.com/doi/full/10.1080/15563650.2019.1661425 |journal=Clinical Toxicology |language=en |volume=58 |issue=2 |pages=82–98 |doi=10.1080/15563650.2019.1661425 |issn=1556-3650}} | |||
* {{Cite journal | |
* {{Cite journal |last1=Thevis |first1=Mario |last2=Kuuranne |first2=Tiia |last3=Geyer |first3=Hans |date=2020 |title=Annual banned-substance review – Analytical approaches in human sports drug testing |url=https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/dta.2735 |journal=Drug Testing and Analysis |language=en |volume=12 |issue=1 |pages=7–26 |doi=10.1002/dta.2735 |pmid=31724288 |issn=1942-7611}} | ||
* {{Cite journal | |
* {{Cite journal |last1=Alam |first1=Ryan M. |last2=Keating |first2=John J. |date=2020 |title=Adding more "spice" to the pot: A review of the chemistry and pharmacology of newly emerging heterocyclic synthetic cannabinoid receptor agonists |url=https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/dta.2752 |journal=Drug Testing and Analysis |language=en |volume=12 |issue=3 |pages=297–315 |doi=10.1002/dta.2752 |pmid=31854124 |issn=1942-7611}} | ||
{{Draft categories| | |||
] | ] | ||
] | ] | ||
] | ] | ||
}} |
Latest revision as of 09:00, 8 January 2025
This article may incorporate text from a large language model. It may include hallucinated information or fictitious references. Copyright violations or claims lacking verification should be removed. Additional guidance is available on the associated project page. (January 2025) |
Names | |
---|---|
IUPAC name -naphthalen-1-ylmethanone | |
Other names (9-(5-fluoropentyl)-9H-carbazol-3-yl)(naphthalen-1-yl)methanone | |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
ChemSpider | |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | C28H24FNO |
Molar mass | 409.5 g/mol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). N (what is ?) Infobox references |
EG-2201 is a synthetic cannabinoid belonging to the indole-3-carboxamide family. It has been identified as a designer drug and is structurally related to other synthetic cannabinoids, such as EG-018 and MDMB-CHMCZCA. It is primarily used illicitly due to its psychoactive effects, which mimic delta-9-tetrahydrocannabinol (THC), the active ingredient in cannabis.
Chemical properties
EG-2201 comprises a carbazole core with a fluorinated alkyl chain and a naphthalene-based ketone moiety. These modifications enhance its receptor binding affinity.
Pharmacology
EG-2201 acts as a potent agonist of the cannabinoid receptor type 1 (CB1), producing effects similar to THC. Its synthetic modifications result in increased potency and altered pharmacokinetics, making it more hazardous.
Legal status
The legal status of EG-2201 varies globally:
- United States: Classified as a Schedule I substance under the Controlled Substances Act.
- European Union: Banned in several member states.
- Japan: Controlled under the Narcotics and Psychotropics Control Act.
Risks and toxicity
Limited toxicity studies exist for EG-2201, but related synthetic cannabinoids are associated with seizures, cardiovascular events, and psychiatric disturbances. Its metabolic byproducts may also be toxic.
See also
References
- Mogler, Lukas; Franz, Florian; Wilde, Maurice; Huppertz, Laura M.; Halter, Sebastian; Angerer, Verena; Moosmann, Bjoern; Auwärter, Volker (2018). "Phase I metabolism of the carbazole-derived synthetic cannabinoids EG-018, EG-2201, and MDMB-CHMCZCA and detection in human urine samples". Drug Testing and Analysis. 10 (9): 1417–1429. doi:10.1002/dta.2398. ISSN 1942-7611. PMID 29726116.
- Potts, A. J.; Cano, C.; Thomas, S. H. L.; Hill, S. L. (2020-02-01). "Synthetic cannabinoid receptor agonists: classification and nomenclature". Clinical Toxicology. 58 (2): 82–98. doi:10.1080/15563650.2019.1661425. ISSN 1556-3650. PMID 31524007.
- Banister, Samuel D.; Connor, Mark (2018), Maurer, Hans H.; Brandt, Simon D. (eds.), "The Chemistry and Pharmacology of Synthetic Cannabinoid Receptor Agonist New Psychoactive Substances: Evolution", New Psychoactive Substances, vol. 252, Cham: Springer International Publishing, pp. 191–226, doi:10.1007/164_2018_144, ISBN 978-3-030-10560-0, PMID 30105473, retrieved 2025-01-02
Sources
- Gaunitz, Franziska; Dahm, Patrick; Mogler, Lukas; Thomas, Andreas; Thevis, Mario; Mercer-Chalmers-Bender, Katja (June 2019). "In vitro metabolic profiling of synthetic cannabinoids by pooled human liver microsomes, cytochrome P450 isoenzymes, and Cunninghamella elegans and their detection in urine samples". Analytical and Bioanalytical Chemistry. 411 (16): 3561–3579. doi:10.1007/s00216-019-01837-8. ISSN 1618-2642. PMID 31183523.
- Thevis, Mario; Kuuranne, Tiia; Geyer, Hans (2020). "Annual banned-substance review – Analytical approaches in human sports drug testing". Drug Testing and Analysis. 12 (1): 7–26. doi:10.1002/dta.2735. ISSN 1942-7611. PMID 31724288.
- Alam, Ryan M.; Keating, John J. (2020). "Adding more "spice" to the pot: A review of the chemistry and pharmacology of newly emerging heterocyclic synthetic cannabinoid receptor agonists". Drug Testing and Analysis. 12 (3): 297–315. doi:10.1002/dta.2752. ISSN 1942-7611. PMID 31854124.