Misplaced Pages

Shell (projectile): Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 11:32, 4 April 2011 editEmausBot (talk | contribs)Bots, Template editors2,864,855 editsm r2.6.4) (robot Modifying: simple:Shell (projectile)← Previous edit Latest revision as of 00:42, 2 January 2025 edit undoAudaciter (talk | contribs)Extended confirmed users7,598 editsm Background 
(615 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Payload-carrying projectile}}
], showing ].]]
{{About|the artillery projectile|the small arms cartridge|shotgun shell}}
A '''shell''' is a payload-carrying ], which, as opposed to ], contains an explosive or other filling, though modern usage sometimes includes large solid projectiles properly termed '''shot''' (AP, APCR, APCNR, APDS, APFSDS and proof shot). Solid shot may contain a pyrotechnic compound if a ] or spotting charge is used.
{{Use dmy dates|date=September 2020}}
]. From left to right: 90 mm ], 120 mm pig iron incendiary shell, 77/14 model – 75 mm high-explosive shell, model 16–75 mm shrapnel shell.]]
] 155 millimeter ] shell, a very small ] with an explosive yield equivalent to 72 tons of ] (0.072 ]). It could be fired from any standard 155 mm (6.1 inch) ] (e.g., the ] or ]).]]
]s. All have ]s fitted.]]


A '''shell''', in a modern ] context, is a ] whose payload contains an ], ], or other ] filling. Originally it was called a '''bombshell''', contrasting with solid shells used for early rifled artillery,{{Citation needed|date=January 2024}} but "shell" has come to be unambiguous in a military context. A shell can hold a ].
All explosive and incendiary filled projectiles, particularly for mortars, were originally called ''grenades'', derived from the pomegranate due to its seeds being similar to grains of powder. ''Grenade'' is still used for an artillery or mortar projectile in some European languages.<ref></ref>


All explosive- and incendiary-filled projectiles, particularly for ]s, were originally called ''grenades'', derived from the ] word for ], so called because of the similarity of shape and that the multi-seeded fruit resembles the powder-filled, fragmentizing bomb. Words cognate with ''grenade'' are still used for an ] or mortar projectile in some European languages.<ref>{{cite web|url=http://www.etymonline.com/index.php?search=grenade&searchmode=none |title=Etymology of grenade |publisher=Etymonline.com |date=1972-01-08 |access-date=2013-02-27}}</ref>
Shells are usually large calibre projectiles fired by ], ]s (including ]s), and ]s.


Shells usually have the shape of a ] topped by an ]-shaped nose for good aerodynamic performance, possibly with a tapering base; but some specialized types are quite different. Shells are usually large-caliber projectiles fired by artillery, ]s (e.g. ]s, ]s, and ]s), ]s, and ]s. The shape is usually a ] topped by an ]-tipped ] for good ] ], and possibly with a tapered ]; but some specialized types differ widely.


==History== ==Background==
Gunpowder is a ], meaning it will not create a concussive, ] explosion unless it is contained, as in a modern-day ] or ]. Early ] were hollow cast-iron balls filled with gunpowder, and "shells" were similar devices designed to be shot from artillery in place of solid cannonballs ("shot"). ], the term "shell", from the casing, came to mean the entire ].
] (1868-1869), ].]]
Solid cannonballs (“shot”) did not need a ], but hollow balls (“shells”) filled with something, such as gunpowder to fragment the ball needed a fuze, either impact (or percussion) or time. Percussion fuzes with a spherical projectile presented a challenge because there was no way of ensuring that the impact mechanism hit the target. Therefore shells needed a time fuze that was ignited before or during firing and burnt until the shell reached its target. Early reports of shells include Venetian use at Jadra in 1376 and shells with fuzes at the 1421 siege of St Boniface in Corsica. These were two hollowed hemispheres of stone or bronze held together by an iron hoop.<ref name="Hogg pg 164">Hogg pg 164</ref> Written evidence for early explosive shells in China appears in the early ] (1368&ndash;1644) ] military manual '']'', compiled by ] (] 14th to early 15th century) and ] (1311&ndash;1375) sometime before the latter's death, a preface added by Jiao in 1412.<ref name="needham volume 5 part 7 24 25 264">Needham, Joseph. (1986). Science and Civilization in China: Volume 5, Chemistry and Chemical Technology, Part 7, Military Technology; the Gunpowder Epic. Taipei: Caves Books Ltd. Page 24&ndash;25, 264.</ref> As described in their book, these hollow, gunpowder-packed shells were made of ].<ref name="needham volume 5 part 7 24 25 264"/>


In a gunpowder-based shell, the casing was intrinsic to generating the explosion, and thus had to be strong and thick. Its fragments could do considerable damage, but each shell broke into only a few large pieces. Further developments led to shells which would fragment into smaller pieces. The advent of ] such as ] removed the need for a pressure-holding casing, so the casing of later shells only needed to contain the munition, and, if desired, to produce shrapnel. The term "shell," however, was sufficiently established that it remained as the term for such munitions.
Yi jang-son made ] in the reign of ].{{Citation needed|date=April 2010}} <sup>(''] and ]'')</sup> Bigyukjincheonroi is a time shell that consisted of wooden tube wound with time fuze made of thread, iron scrap and cap. Its time fuze can be set the time by length of thread. It was used in ].


Hollow shells filled with gunpowder needed a fuse that was either impact triggered (]) or time delayed.
An early problem was that until 1672 there was no means of measuring time with any useful degree of precision - clockwork mechanisms did not exist. The burning time of the powder fuze was subject to considerable trial and error. Early powder burning fuzes had to be loaded fuze down to be ignited by firing or a portfire put down the barrel to light the fuze. However, by the 18th Century it was discovered that the fuze towards the muzzle could be lit by the flash through the windage between shell and barrel. Nevertheless, shells came into regular use in the 16th Century, for example a 1543 English mortar shell filled with 'wildfire'. About 1700 shells began to be employed for horizontal fire from howitzers with a small propelling charge and in 1779 experiments demonstrated that they could be used from guns with heavier charges. They became usual with field artillery early in the 19th Century. By this time shells were usually ], but bronze, lead, brass and even glass were tried.<ref>Hogg pg 164 - 165</ref>
Percussion fuses with a spherical projectile presented a challenge because there was no way of ensuring that the impact mechanism contacted the target. Therefore, ball shells needed a time fuse that was ignited before or during firing and burned until the shell reached its target.


==Early shells==
The history of artillery fuzes is given in the ].
{{See also|History of gunpowder}}
]'']]
Cast iron shells packed with gunpowder have been used in warfare since at least early 13th century China. Hollow, gunpowder-packed shells made of ] used during the Song dynasty (960-1279) are described in the early ] ] military manual '']'', written in the mid 14th century.<ref name="needham volume 5 part 7 24 25 264">Needham, Joseph. (1986). Science and Civilization in China: Volume 5, Chemistry and Chemical Technology, Part 7, Military Technology; the Gunpowder Epic. Taipei: Caves Books Ltd. Pages 24–25, 264.</ref> The ''History of Jin'' 《金史》 (compiled by 1345) states that in 1232, as the Mongol general ] (1176–1248) descended on the Jin stronghold of ], the defenders had a "]" which "consisted of gunpowder put into an iron container&nbsp;... then when the fuse was lit (and the projectile shot off) there was a great explosion the noise whereof was like thunder, audible for more than thirty miles, and the vegetation was scorched and blasted by the heat over an area of more than ]. When hit, even ] was quite pierced through."<ref name="needham volume 5 part 7 24 25 264"/> Archeological examples of these shells from the 13th century Mongol invasions of Japan have been recovered from a shipwreck.<ref>{{cite journal|last=Delgado|first=James|title=Relics of the Kamikaze|journal=Archaeology|date=February 2003|volume=56|issue=1|publisher=Archaeological Institute of America|url=http://archive.archaeology.org/0301/etc/kamikaze.html|url-status=live|archive-url=https://web.archive.org/web/20131229155139/http://archive.archaeology.org/0301/etc/kamikaze.html|archive-date=2013-12-29}}</ref>


Shells were used in combat by the ] at Jadra in 1376. Shells with fuses were used at the 1421 siege of St Boniface in ]. These were two hollowed hemispheres of stone or bronze held together by an iron hoop.<ref name="Hogg pg 164">Hogg, p. 164.</ref> At least since the 16th century grenades made of ceramics or glass were in use in Central Europe. A hoard of several hundred ceramic grenades dated to the 17th century was discovered during building works in front of a bastion of the Bavarian city of ], ]. Many of the grenades contained their original black-powder loads and igniters. Most probably the grenades were intentionally dumped in the moat of the bastion before the year 1723.
] in a 1824 ].]]
<ref>{{cite journal |last1=Franzkowiak |first1=Andreas |last2=Wenzel |first2=Chris |title=Keramikgranaten aus Ingolstadt - Ein außergewöhnlicher Fund |journal=Waffen- und Kostümkunde - Zeitschrift für Waffen- und Kleidungsgeschichte |volume=60 |number=1 |date=2018 |issn=0042-9945 |pages=65–80 |language=de }}</ref> An early problem was that there was no means of ] measuring the time to detonation{{snd}} reliable fuses did not yet exist, and the burning time of the powder fuse was subject to considerable trial and error. Early powder-burning fuses had to be loaded fuse down to be ignited by firing or a portfire or ] put down the barrel to light the fuse. Other shells were wrapped in ] cloth, which would ignite during the firing and in turn ignite a powder fuse.{{citation needed|date=January 2023}} Nevertheless, shells came into regular use in the 16th century, for example, a 1543 English mortar shell was filled with "wildfire."{{citation needed|date=January 2023}}
] for muzzle-loading rifled guns.]]
Cast-iron spherical common shell (so named because they were used against "common" targets) were in use up to 1871. Typically the thickness of the metal body was about 1/6th their diameter and they were about 2/3rds the weight of solid shot of the same calibre. In order to ensure that shells were loaded with their fuzes towards the muzzle they were attached to wooden bottoms called ']'. In 1819 a committee of British artillery officers recognised that they were essential stores and in 1830 Britain standardised sabot thickness as half inch.<ref>Hogg pg 165</ref> The sabot also intended to reduce jamming during loading and the rebounding of the shell as it traveled along the bore on discharge<!--What does this mean? Answer: It means that the sabot was supposed to make the shell travel straighter and hit the side of the barrel less, since metal objects clashing together in a contained space with a lot of gunpowder in evidence is generally a bad idea.-->. Mortar shells were not fitted with ]s.


] with a hollowed shell from the ]]]
Rifling was invented by Jaspard Zoller, a Viennese gun maker at the end of the 15th Century, and it was realised that twisted rifling to spin an elongated projectile would greatly improve its accuracy. This was known to artillerists but its application to artillery was beyond the available technology until around the mid 19th Century. English inventor notable Armstrong, Whitworth and Lancaster and the latter's rifled guns were used in the Crimean War. Armstrong's rifled ] cannon was a key innovation and adopted for British service in 1859. Also in the 1850s rifled guns were developed by Major Cavelli in Italy, Baron Wahrendorff and Krupp in Germany and the Wiard gun in the United States.<ref>Hogg pg 80 - 83</ref> However, rifled barrels required some means of engaging the shell with the rifling. Lead coated shells were used with Armstrong guns, but were not satisfactory so studded projectiles were adopted. However these did not seal the gap between shell and barrel. Wads at the shell base were tried, without success, in 1878 the British adopted a copper ']' at the base of their studded projectiles, and in 1879 tried a rotating gas check to replace the studs, leading to the 1881 automatic gas-check. This was soon followed by the Vavaseur copper driving band as part of the projectile. The driving band rotated the projectile, centred it in the bore and prevented gas escaping forwards. A driving band has to be soft but tough enough to prevent stripping by rotational and engraving stresses. Copper is generally most suitable but cupro nickel or gilding metal are also used.<ref name="Hogg pg 165 - 166">Hogg pg 165 - 166</ref>
By the 18th century, it was known that if loaded toward the muzzle instead,
the fuse could be lit by the flash through the ] between the shell and the barrel. At about this time, shells began to be employed for ] from ]s with a small ] charge and, in 1779, experiments demonstrated that they could be used from guns with heavier charges.


The use of exploding shells from field artillery became relatively commonplace from early in the 19th century. Until the mid 19th century, shells remained as simple exploding spheres that used gunpowder, set off by a slow burning fuse. They were usually made of ], but ], ], ] and even ] shell casings were experimented with.<ref>Hogg, pp. 164–165.</ref> The word '']'' encompassed them at the time, as heard in the lyrics of '']'' ("the bombs bursting in air"), although today that sense of ''bomb'' is obsolete. Typically, the thickness of the metal body was about a sixth of their diameter, and they were about two-thirds the weight of solid shot of the same caliber.
The first pointed armour piercing shell was introduced by Major Palliser in 1863, it was made of chilled ] with an ogival head of 1 1/2 calibres radius. However, during 1880-1890 ] shells and armour began to appear and it was realised that steel bodies for explosive filled shells had advantages - better fragmentation and resistance to the stresses of firing. These were cast and forged steel.<ref name="Hogg pg 165 - 166"/>


To ensure that shells were loaded with their fuses toward the muzzle, they were attached to wooden bottoms called '']''. In 1819, a committee of British artillery officers recognized that they were essential stores and in 1830 Britain standardized sabot thickness as a half-inch.<ref>Hogg, p. 165.</ref> The sabot was also intended to reduce jamming during loading. Despite the use of exploding shells, the use of smoothbore cannons firing spherical projectiles of shot remained the dominant artillery method until the 1850s.
] shell section, cut for instruction, belonging to a ].]]
{{Clear}}


==Modern shell==
Shells have never been limited to an explosive filling. An incendiary shell was invented by Valturio in 1460. The carcass was invented in 1672 by a gunner serving Christoph van Galen, Prince Bishop of Munster, initially oblong in an iron frame or carcass (with poor ballistic properties) it evolved into a spherical shell. Their use continued well into the 19th Century. In 1857 the British introduced a incendiary shell (Martin's) filled with molten iron, which replaced red hot shot used against ships, most notably at Gibraltar in 1782. Two patterns of incendiary shell were used by the British in World War 1, one designed for use against Zeppelins.<ref>Hogg pg 171 - 174</ref>
The mid–19th century saw a revolution in artillery, with the introduction of the first practical ] weapons. The new methods resulted in the reshaping of the spherical shell into its modern recognizable cylindro-conoidal form. This shape greatly improved the in-flight stability of the projectile and meant that the primitive time fuzes could be replaced with the percussion fuze situated in the nose of the shell. The new shape also meant that further, armour-piercing designs could be used.


During the 20th century, shells became increasingly streamlined. In World War I, ogives were typically two circular radius head (crh) – the curve was a segment of a circle having a radius of twice the shell caliber. After that war, ogive shapes became more complex and elongated. From the 1960s, higher quality steels were introduced by some countries for their HE shells, this enabled thinner shell walls with less weight of metal and hence a greater weight of explosive. Ogives were further elongated to improve their ballistic performance.
Similar to incendiary shells were star shells, designed for illumination rather than arson. Sometimes called lightballs they were in use from the 17th Century onwards. The British adopted parachute lightballs in 1866 for 10, 8 and 5 1/2&nbsp;inch calibres. The 10-inch wasn't officially declared obsolete until 1920<ref name="Hogg pg 174 - 176">Hogg pg 174 - 176</ref>!


===Rifled breech loaders===
Smoke balls also date back to the 17th Century, British ones contained a mix of saltpetre, coal, pitch, tar, resin, sawdust, crude antimony and sulphur. They produced a 'noisome smoke in abundance that is impossible to bear'. In the 19th Century British service they were made of concentric paper with thickness about 1/15th of total diameter and filled with powder, saltpetre, pitch, coal and tallow. The were used to 'suffocate or expel the enemy in casemates, mines or between decks; for concealing operations; and as signals.<ref name="Hogg pg 174 - 176"/>
{{main|Rifled breech loader}}
] was a pivotal development for modern artillery as the first practical ]. Pictured, deployed by ] during the ] (1868–69).]]
Advances in metallurgy in the industrial era allowed for the construction of ] that could fire at a much greater ]. After the British artillery was shown up in the ] as having barely changed since the ], the industrialist ] was awarded a contract by the government to design a new piece of artillery. Production started in 1855 at the ] and the ] at ].<ref>{{cite journal |last=Bastable |first=Marshall J. |year=1992 |title=From Breechloaders to Monster Guns: Sir William Armstrong and the Invention of Modern Artillery, 1854–1880 |journal=Technology and Culture |doi=10.2307/3105857 |volume=33 |issue=2 |pages=213–247 |jstor=3105857|s2cid=112105821 }}</ref><ref>{{Cite web|url=https://www.gracesguide.co.uk/William_Armstrong|title=William George Armstrong - Graces Guide|website=www.gracesguide.co.uk}}</ref>


The piece was ], which allowed for a much more accurate and powerful action. Although rifling had been tried on small arms since the 15th century, the necessary machinery to accurately rifle artillery only became available in the mid-19th century. ] and ] independently produced rifled cannons in the 1840s, but it was Armstrong's gun that was first to see widespread use during the Crimean War.<ref>{{cite web |url=http://www.au.af.mil/au/awc/awcgate/gabrmetz/gabr001b.htm |archive-url=https://web.archive.org/web/19990819063641/http://www.au.af.mil/au/awc/awcgate/gabrmetz/gabr001b.htm |url-status=dead |archive-date=19 August 1999 |title=The Emergence of Modern War}}</ref> The ] shell of the Armstrong gun was similar in shape to a ] and had a thin lead coating which made it fractionally larger than the gun's bore and which engaged with the gun's ] grooves to impart spin to the shell. This spin, together with the elimination of ] as a result of the tight fit, enabled the gun to achieve greater range and accuracy than existing smooth-bore muzzle-loaders with a smaller powder charge.
During the ], ]s and explosive shells inflicted terrible casualties on infantry, accounting for nearly 70% of all war casualties and leading to the adoption of steel ]s on both sides. Shells filled with poison ] were used from 1917 onwards. Frequent problems with shells led to many military disasters when shells failed to explode, most notably during the 1916 ].

The gun was also a breech-loader. Although attempts at breech-loading mechanisms had been made since medieval times, the essential engineering problem was that the mechanism could not withstand the explosive charge. It was only with the advances in ] and ] capabilities during the ] that Armstrong was able to construct a viable solution. Another innovative feature was what Armstrong called its "grip", which was essentially a ]; the 6 inches of the bore at the muzzle end was of slightly smaller diameter, which centered the shell before it left the barrel and at the same time slightly ]d down its lead coating, reducing its diameter and slightly improving its ballistic qualities.

Rifled guns were also developed elsewhere – by Major Giovanni Cavalli and Baron ] in Sweden, ] in Germany and the ] in the United States.<ref>Hogg, pp. 80–83.</ref> However, rifled barrels required some means of engaging the shell with the rifling. Lead coated shells were used with the ], but were not satisfactory so studded projectiles were adopted. However, these did not seal the gap between shell and barrel. Wads at the shell base were also tried without success.

In 1878, the British adopted a copper "]" at the base of their studded projectiles and in 1879 tried a rotating gas check to replace the studs, leading to the 1881 automatic gas-check. This was soon followed by the Vavaseur copper ] as part of the projectile. The driving band rotated the projectile, centered it in the bore and prevented gas escaping forwards. A driving band has to be soft but tough enough to prevent stripping by rotational and engraving stresses. ] is generally most suitable but ] or ] were also used.<ref name="Hogg pg 165 - 166">Hogg, pp. 165–166.</ref>

===Percussion fuze===
{{main|Artillery fuze}}
]
Although an early percussion fuze appeared in 1650 that used a flint to create sparks to ignite the powder, the shell had to fall in a particular way for this to work and this did not work with spherical projectiles. An additional problem was finding a suitably stable "percussion powder". Progress was not possible until the discovery of ] in 1800, leading to priming mixtures for small arms patented by the Rev ], and the copper percussion cap in 1818.

The percussion fuze was adopted by Britain in 1842. Many designs were jointly examined by the army and navy, but were unsatisfactory, probably because of the safety and arming features. However, in 1846 the design by Quartermaster Freeburn of the Royal Artillery was adopted by the army. It was a wooden fuze about 6&nbsp;inches long and used shear wire to hold blocks between the fuze magazine and a burning match. The match was ignited by propellant flash and the shear wire broke on impact. A British naval percussion fuze made of metal did not appear until 1861.<ref>Hogg, pp. 203–203.</ref>

====Types of fuzes====
{{div col}}
* ]
** ]
** ]
** ]
** ]
* ]
** ]
** ]
** ]
** ]
{{div col end}}

===Smokeless powders===
{{main|Smokeless powder}}
] was the first practical ]]]

] was used as the only form of explosive up until the end of the 19th century. Guns using black powder ] would have their view obscured by a huge cloud of smoke and concealed shooters were given away by a cloud of smoke over the firing position. ], a nitrocellulose-based material, was discovered by ] chemist ] in 1846. He promoted its use as a blasting explosive<ref name="Handloading28">Davis, William C., Jr. ''Handloading''. National Rifle Association of America (1981). p.&nbsp;28.</ref> and sold manufacturing rights to the ]. Guncotton was more powerful than gunpowder, but at the same time was somewhat more unstable. John Taylor obtained an English patent for guncotton; and John Hall & Sons began ]. British interest waned after an explosion destroyed the Faversham factory in 1847. Austrian Baron ] built two guncotton plants producing artillery propellant, but it was dangerous under field conditions, and guns that could fire thousands of rounds using gunpowder would reach their service life after only a few hundred shots with the more powerful guncotton.

Small arms could not withstand the pressures generated by guncotton. After one of the Austrian factories blew up in 1862, ] began manufacturing guncotton in ] in 1863; and British ] chemist Sir ] began thorough research at ] leading to a manufacturing process that eliminated the impurities in nitrocellulose making it safer to produce and a stable product safer to handle. Abel patented this process in 1865, when the second Austrian guncotton factory exploded. After the Stowmarket factory exploded in 1871, Waltham Abbey began production of guncotton for torpedo and mine warheads.<ref name="sharpe141">Sharpe, Philip B. ''Complete Guide to Handloading''. 3rd edition (1953). Funk & Wagnalls. pp.&nbsp;141–144.</ref>

] developed the ] explosive in 1889]]
In 1884, ] invented a smokeless powder called ] (short for ''poudre blanche''—white powder, as distinguished from ])<ref name="Chemistry289">Davis, Tenney L. ''The Chemistry of Powder & Explosives'' (1943), pages&nbsp;289–292.</ref> made from 68.2% insoluble ], 29.8% soluble nitrocellusose gelatinized with ] and 2% paraffin. This was adopted for the Lebel rifle.<ref name="Artillery139">Hogg, Oliver F. G. ''Artillery: Its Origin, Heyday and Decline'' (1969), p.&nbsp;139.</ref> Vieille's powder revolutionized the effectiveness of small guns, because it gave off almost no smoke and was three times more powerful than black powder. Higher ] meant a flatter ] and less wind drift and bullet drop, making 1000 meter shots practicable. Other European countries swiftly followed and started using their own versions of Poudre&nbsp;B, the first being ] and ] which introduced new weapons in 1888. Subsequently, Poudre&nbsp;B was modified several times with various compounds being added and removed. ] began adding ] as a stabilizer in 1888.<ref name="sharpe141"/>

Britain conducted trials on all the various types of propellant brought to their attention, but were dissatisfied with them all and sought something superior to all existing types. In 1889, Sir ], ] and W.&nbsp;Kellner patented (No.&nbsp;5614 and No.&nbsp;11,664 in the names of Abel and Dewar) a new formulation that was manufactured at the Royal Gunpowder Factory at Waltham Abbey. It entered British service in 1891 as ] Mark&nbsp;1. Its main composition was 58% nitro-glycerine, 37% guncotton and 3% mineral jelly. A modified version, Cordite&nbsp;MD, entered service in 1901, this increased guncotton to 65% and reduced nitro-glycerine to 30%, this change reduced the combustion temperature and hence erosion and barrel wear. Cordite could be made to burn more slowly which reduced maximum pressure in the chamber (hence lighter breeches, etc.), but longer high pressure – significant improvements over gunpowder. Cordite could be made in any desired shape or size.<ref name="Artillery141">Hogg, Oliver F. G. ''Artillery: Its Origin, Heyday and Decline'' (1969), p.&nbsp;141.</ref> The creation of cordite led to a lengthy court battle between Nobel, Maxim, and another inventor over alleged British ] infringement.

==Other shell types==
]]]
A variety of fillings have been used in shells throughout history. An incendiary shell was invented by Valturio in 1460. The ] was first used by the French under ] in 1672.<ref>] and ]. ''''. 1863. p.&nbsp;142.</ref> Initially in the shape of an ] in an iron frame (with poor ballistic properties) it evolved into a spherical shell. Their use continued well into the 19th century.

A modern version of the incendiary shell was developed in 1857 by the British and was known as ''Martin's shell'' after its inventor. The shell was filled with molten iron and was intended to break up on impact with an enemy ship, splashing molten iron on the target. It was used by the Royal Navy between 1860 and 1869, replacing ] as an anti-ship, incendiary projectile.<ref name="Jobson2016">{{cite book |author=Philip Jobson |title=Royal Artillery Glossary of Terms and Abbreviations: Historical and Modern |url=https://books.google.com/books?id=hmX0DAAAQBAJ&pg=PT346 |date=2 September 2016 |publisher=History Press |isbn=978-0-7509-8007-4}}</ref>

Two patterns of incendiary shell were used by the British in World War&nbsp;I, one designed for use against Zeppelins.<ref>Hogg, pp. 171–174.</ref>

Similar to incendiary shells were star shells, designed for illumination rather than arson. Sometimes called lightballs they were in use from the 17th&nbsp;century onwards. The British adopted parachute lightballs in 1866 for 10-, 8- and 5{{frac|1|2}}-inch calibers. The 10-inch was not officially declared obsolete until 1920.<ref name="Hogg pg 174 - 176">Hogg, pp. 174–176.</ref>

Smoke balls also date back to the 17th century, British ones contained a mix of saltpetre, coal, pitch, tar, resin, sawdust, crude antimony and sulphur. They produced a "noisome smoke in abundance that is impossible to bear". In 19th-century British service, they were made of concentric paper with a thickness about 1/15th of the total diameter and filled with powder, saltpeter, pitch, coal and tallow. They were used to 'suffocate or expel the enemy in casemates, mines or between decks; for concealing operations; and as signals.<ref name="Hogg pg 174 - 176"/>

During the ], ]s and explosive shells inflicted terrible casualties on infantry, accounting for nearly 70% of all war casualties and leading to the adoption of steel ]s on both sides. Frequent problems with shells led to many military disasters with ] shells, most notably during the 1916 ]. Shells filled with poison ] were used from 1917 onwards.

==Propulsion==
Artillery shells are differentiated by how the shell is loaded and propelled, and the type of breech mechanism.

===Fixed ammunition===
Fixed ammunition has three main components: the ]d projectile, the ] to hold the propellants and ], and the single propellant charge. Everything is included in a ready-to-use package and in British ordnance terms is called ]. Often guns which use fixed ammunition use ] or sliding-wedge breeches and the case provides ] which seals the ] of the gun and prevents propellant gasses from escaping. Sliding block breeches can be horizontal or vertical. Advantages of fixed ammunition are simplicity, safety, moisture resistance and speed of loading. Disadvantages are eventually a fixed round becomes too long or too heavy to load by a gun crew. Another issue is the inability to vary propellant charges to achieve different velocities and ranges. Lastly, there is the issue of resource usage since a fixed round uses a case, which can be an issue in a prolonged war if there are metal shortages.<ref name=":Hogg">{{Cite book|title=Artillery|last1=Hogg|first1=Ian |last2=Batchelor |first2=John H. |date=1972|publisher=Scribner |isbn=0684130920|location=New York|oclc=571972}}</ref>

===Separate loading cased charge===
], with the propellant cases and projectiles separated]]

Separate loading cased charge ammunition has three main components: the fuzed projectile, the casing to hold the propellants and primer, and the bagged propellant charges. The components are usually separated into two or more parts. In British ordnance terms, this type of ammunition is called ]. Often guns which use separate loading cased charge ammunition use sliding-block or sliding-wedge breeches and during ] and ] Germany predominantly used fixed or separate loading cased charges and sliding block breeches even for their largest guns. A variant of separate loading cased charge ammunition is '''semi-fixed''' ammunition. With semi-fixed ammunition the round comes as a complete package but the projectile and its case can be separated. The case holds a set number of bagged charges and the gun crew can add or subtract propellant to change range and velocity. The round is then reassembled, loaded, and fired. Advantages include easier handling for larger caliber rounds, while range and velocity can easily be varied by increasing or decreasing the number of propellant charges. Disadvantages include more complexity, slower loading, less safety, less moisture resistance, and the metal cases can still be a material resource issue.<ref name=":Hogg" />

===Separate loading bagged charge===
In separate loading bagged charge ammunition there are three main components: the fuzed projectile, the bagged charges and the primer. Like separate loading cased charge ammunition, the number of propellant charges can be varied. However, this style of ammunition does not use a cartridge case and it achieves obturation through a ] instead of a sliding block. Sometimes when reading about artillery the term separate loading ammunition will be used without clarification of whether a cartridge case is used or not, in which case it refers to the type of breech used. Heavy artillery pieces and ] tend to use bagged charges and projectiles because the weight and size of the projectiles and propelling charges can be more than a gun crew can manage. Advantages include easier handling for large rounds, decreased metal usage, while range and velocity can be varied by using more or fewer propellant charges. Disadvantages include more complexity, slower loading, less safety and less moisture resistance.<ref name=":Hogg" />

===Range-enhancing technologies {{Anchor|RAP}}===
]
Extended-range shells are sometimes used. These special shell designs may be ]s (RAP) or ] (BB) to increase range. The first has a small rocket motor built into its base to provide additional thrust. The second has a pyrotechnic device in its base that bleeds gas to fill the partial vacuum created behind the shell and hence reduce base-drag. These shell designs usually have reduced high-explosive filling to remain within the permitted mass for the projectile, and hence less lethality.


==Sizes== ==Sizes==
{{See also|British standard ordnance weights and measurements|List of British ordnance terms}}
</ref>]]

], 22 February 1945]]

The ] of a shell is its ]. Depending on the historical period and national preferences, this may be specified in ]s, ]s, or ]es. The length of gun barrels for large ] and shells (naval) is frequently quoted in terms of the ratio of the barrel length to the bore size, also called ]. For example, the ] is 50 calibers long, that is, 16"×50=800"=66.7 feet long. Some guns, mainly British, were specified by the weight of their shells (see below).


Explosive rounds as small as ] mm and ] mm have been used on aircraft and armoured vehicles, but their small explosive yields have led some nations to limit their explosive rounds to ] (.78 in) or larger. International Law precludes the use of explosive ammunition for use against individual persons, but not against vehicles and aircraft. The largest shells ever fired during war were those from the German super-]s, ], which were 800&nbsp;mm (31.5&nbsp;in) in caliber. Very large shells have been replaced by ]s, ], and ]s. Today the largest shells in common use are ] (6.1&nbsp;in).
The ] of a shell is its ]. Depending on the historical period and national preferences, this may be specified in ]s, ]s, or ]es. The length of gun barrels for large ] and shells (naval) is frequently quoted in terms of calibre. Some guns, mainly British, were specified by the weight of their shells (see below).


]
Due to manufacturing difficulties the smallest shells commonly used are around 20&nbsp;mm calibre, used in aircraft cannon and on armoured vehicles. Smaller shells are only rarely used as they are difficult to manufacture and can only have a small explosive charge. The largest shells ever fired were those from the German super-]s, ], which were 800&nbsp;mm (31.5") in calibre. Very large shells have been replaced by ]s, ], and bombs, and today the largest shells in common use are 155&nbsp;mm (6.1&nbsp;inches).
Gun calibers have standardized around a few common sizes, especially in the larger range, mainly due to the uniformity required for efficient military logistics. Shells of 105 and 155&nbsp;mm for artillery with 105 and 120&nbsp;mm for tank guns are common in ] allied countries. Shells of 122, 130, and 152&nbsp;mm for artillery with 100, 115, and 125&nbsp;mm for tank guns, remain in common usage among the regions of Eastern Europe, Western Asia, Northern Africa, and Eastern Asia. Most common calibers have been in use for many decades, since it is ] complex to change the caliber of all guns and ammunition stores.


The weight of shells increases by and large with caliber. A typical 155&nbsp;mm (6.1&nbsp;in) shell weighs about 50&nbsp;kg (110 lbs), a common 203&nbsp;mm (8&nbsp;in) shell about 100&nbsp;kg (220 lbs), a concrete demolition 203&nbsp;mm (8&nbsp;in) shell 146&nbsp;kg (322 lbs), a 280&nbsp;mm (11&nbsp;in) battleship shell about 300&nbsp;kg (661 lbs), and a 460&nbsp;mm (18&nbsp;in) battleship shell over 1,500&nbsp;kg (3,307 lbs). The ] ] fired shells that weighed between 4,800&nbsp;kg (10,582 lbs) and 7,100&nbsp;kg (15,653 lbs).
Gun calibres have standardized around a few common sizes, especially in the larger range, mainly due to the uniformity required for efficient military logistics. Shells of 105, 120, and 155&nbsp;mm diameter are common for NATO forces' artillery and ]s. Artillery shells of 122, 130 and 152&nbsp;mm, and tank gun ammunition of 100, 115, or 125&nbsp;mm calibre remain in use in Eastern Europe and China. Most common calibres have been in use for many years, since it is ] complex to change the calibre of all guns and ammunition stores.


During the 19th century, the British adopted a particular form of designating artillery. Field guns were designated by nominal standard projectile weight, while howitzers were designated by barrel caliber. British guns and their ammunition were designated in ]s, e.g., as "two-pounder" shortened to "2-pr" or "2-pdr". Usually, this referred to the actual weight of the standard projectile (shot, shrapnel, or high explosive), but, confusingly, this was not always the case.
The weight of shells increases by and large with calibre. A typical 150&nbsp;mm (5.9") shell weighs about 50&nbsp;kg, a common 203&nbsp;mm (8") shell about 100&nbsp;kg, a concrete demolition 203&nbsp;mm (8") shell 146&nbsp;kg, a 280&nbsp;mm (11") battleship shell about 300&nbsp;kg, and a 460&nbsp;mm (18") battleship shell over 1500&nbsp;kg. The ] ] fired 4.8 and 7.1 tonne shells.


Some were named after the weights of obsolete projectile types of the same caliber, or even obsolete types that were considered to have been functionally equivalent. Also, projectiles fired from the same gun, but of non-standard weight, took their name from the gun. Thus, conversion from "pounds" to an actual barrel diameter requires consulting a historical reference. A mixture of designations were in use for land artillery from the First World War (such as the ], ], 4 inch gun, 4.5 inch howitzer) through to the end of World War II (5.5 inch medium gun, ], 17-pounder tank gun), but the majority of naval guns were by caliber. After the end of World War II, field guns were designated by caliber.
===Old-style British classification by weight===
During the 19th Century the British adopted a particular form of designating artillery. Guns were designated by nominal standard projectile weight while Howitzers were designated by barrel calibre. British Guns and their ammunition were designated in ]s, e.g., as "two-pounder" shortened to "2-pr" or "2-pdr". Usually this referred to the actual weight of the standard projectile (shot, shrapnel or HE), but, confusingly, this was not always the case. Some were named after the weights of obsolete projectile types of the same calibre, or even obsolete types that were considered to have been functionally equivalent. Also, projectiles fired from the same gun, but of non-standard weight, took their name from the gun. Thus, conversion from "pounds" to an actual barrel diameter requires consulting a historical reference. Since the creation of NATO new British guns are designated by calibre.


==Types== ==Types==
] for the ], 1886]]
There are many different types of shells. The principal ones include: There are many different types of shells. The principal ones include:


===High-explosive (HE)=== ===Armour-piercing shells===
{{main|armour-piercing shell}}
]
The most common shell type is high ], commonly referred to simply as HE. They have a strong ] case, a bursting charge, and a ]. The fuse detonates the bursting charge which shatters the case and scatters hot, sharp case pieces (''fragments'', ''splinters'') at high velocity. Most of the damage to soft targets such as unprotected personnel is caused by shell pieces rather than by the blast. The term "shrapnel" is sometimes incorrectly used to describe the shell pieces, but ]s functioned very differently and are long obsolete. Depending on the type of ] used the HE shell can be set to burst on the ground (percussion), in the air above the ground (time or proximity), or after penetrating a short distance into the ground (percussion with delay, either to transmit more ground shock to covered positions, or to reduce the spread of fragments).


With the introduction of the first ]s in the 1850s and 1860s, it became clear that shells had to be designed to effectively pierce the ship armour. A series of British tests in 1863 demonstrated that the way forward lay with high-velocity lighter shells. The first ] was introduced by Major Palliser in 1863. Approved in 1867, ] was an improvement over the ordinary elongated shot of the time. Palliser shot was made of ], the head being chilled in casting to harden it, using composite molds with a metal, water cooled portion for the head.<ref>{{cite web|url=http://members.lycos.co.uk/Juan39/THE_HUASCAR.html|title=Build a Free Website with Web Hosting – Tripod|website=members.lycos.co.uk|access-date=15 June 2014|archive-date=20 March 2008|archive-url=https://web.archive.org/web/20080320054041/http://members.lycos.co.uk/Juan39/THE_HUASCAR.html|url-status=dead}}</ref>
Early high explosives used before and during ] in HE shells were ], ], ]. However, pure TNT was expensive to produce and most nations made some use of mixtures using cruder TNT and ammonium nitrate, some with other compounds included. These fills included Ammonal, Schneiderite and ]. The latter was still in wide use in ].


Britain also deployed Palliser shells in the 1870s–1880s. In the shell, the cavity was slightly larger than in the shot and was filled with 1.5% gunpowder instead of being empty, to provide a small explosive effect after penetrating armour plating. The shell was correspondingly slightly longer than the shot to compensate for the lighter cavity. The powder filling was ignited by the shock of impact and hence did not require a fuze.<ref name="ToA1887">"]", 4th Edition 1887, pp. 203–205.</ref> However, ship armour rapidly improved during the 1880s and 1890s, and it was realised that explosive shells with ] had advantages including better fragmentation and resistance to the stresses of firing. These were cast and forged steel.<ref name="Hogg pg 165 - 166" />
From 1944-5 ] and TNT mixtures became standard. Notably "]. The introduction of 'insensitive munition' requirements, agreements and regulations in the 1990s caused modern western designs to use various types of plastic bonded explosives (PBX) based on RDX.


AP shells containing an explosive filling were initially distinguished from their non-HE counterparts by being called a "shell" as opposed to "shot". By the time of the Second World War, AP shells with a ] were sometimes distinguished by appending the suffix "HE". At the beginning of the war, APHE was common{{Citation needed|date=November 2023}} in ] shells of 75&nbsp;mm caliber and larger due to the similarity with the much larger naval armour piercing shells already in common use. As the war progressed, ordnance design evolved so that the bursting charges in APHE became ever smaller to non-existent, especially in smaller caliber shells, e.g. ] with only 0.2% HE filling.
The percentage of shell weight taken up by its explosive fill increased steadily throughout the 20th Century. Less than 10% was usual in the first few decades, by World War II leading designs were around 15%. However, British researchers in that war identified 25% as being the optimal design for anti-personnel purposes, based on recognition that far smaller fragments than hitherto would give the required effects. This was achieved by 1960s designed 155mm L15 shell developed as part of the ] program. The key requirement for increasing the HE content without increasing shell weight was to reduce the thickness of shell walls, this required improvements in high tensile steel.


====Mine shell==== ====Types of armour-piercing ammunition====
* Solid shell ("shot") - a solid penetrator that uses only initial impact energy to penetrate armour
]. From left to right: 90 mm fragmentation shell, 120 mm pig iron incendiary shell, 77/14 model - 75 mm high explosive shell, model 16 - 75 mm fragmentation shell.]]
** ] (AP)
] shells. Circa 1917.]]
** ] (APBC) - a shot with a cover to improve aerodynamics
The '''mine shell''' is a particular form of HE shell developed for use in small caliber weapons such as 20&nbsp;mm to 30&nbsp;mm cannon. Small HE shells of conventional design can contain only a limited amount of explosive. By using a thin-walled steel casing of high tensile strength, a larger explosive charge can be used. Most commonly the explosive charge also was a more expensive but higher-detonation-energy type. The ''mine shell'' concept was invented by the Germans in the Second World War primarily for use in aircraft guns intended to be fired at opposing aircraft. Mine shells produced relatively little damage due to fragments, but a much more powerful blast. The aluminium structures and skins of Second World War aircraft were readily damaged by this greater level of blast.
** ] (APC)
** ] (APCBC)
** ] (APCR), also known as High-Velocity Armour-Piercing (HVAP)
** ] (APCNR), also known as Armour-Piercing Super-Velocity (APSV) - ]
** ] (APDS)
** ] (APFSDS)
* Hard shell with explosives – a mostly solid shell with an explosive element that detonates, after the shell has penetrated the armour using its impact velocity
** ] (APHE)
** Armour-piercing high-explosive tracer (APHE-T) - an APHE with tracer in base
** Semi-armour-piercing (])
**Semi-armour-piercing high-explosive (SAPHE)
** ] (SAPHEI)
** Semi-armour-piercing high-explosive incendiary tracer (SAPHEI-T)
* Indirect-penetration shell – a shell with a mechanism that is triggered upon impact to cause damage behind armour
** ] (HEAT)
** ] (HESH), also known as High-explosive plastic/plasticized (HEP)


===Armor-piercing (AP)=== ===High-explosive shells===
{{Redirect|High-explosive shell|the material|high explosives}}
<!-- This section is linked from ] -->
] was used in the first high-explosive shells. Cut out section of a high-explosive shell belonging to a ].]]
<!-- This section is linked from ] -->
Although smokeless powders were used as a propellant, they could not be used as the substance for the explosive warhead, because shock sensitivity sometimes caused ] in the artillery barrel at the time of firing. ] was the first high-explosive nitrated ] widely considered suitable to withstand the shock of firing in conventional ]. In 1885, based on research of Hermann Sprengel, French chemist ] patented the use of pressed and cast picric acid in ] charges and ]s. In 1887, the French government adopted a mixture of picric acid and guncotton under the name ''Melinite''. In 1888, Britain started manufacturing a very similar mixture in ], Kent, under the name ''Lyddite''.


Japan followed with an "improved" formula known as '']''. In 1889, a similar material, a mixture of ammonium cresylate with trinitrocresol, or an ammonium salt of trinitrocresol, started to be manufactured under the name '']'' in ]. By 1894, Russia was manufacturing artillery shells filled with picric acid. Ammonium picrate (known as ''Dunnite'' or ]) was used by the United States beginning in 1906.<ref name="brown">Brown, G. I. (1998) ''The Big Bang: a History of Explosives''. Sutton Publishing. {{ISBN|0-7509-1878-0}}. pp. 151–163.</ref><ref>Marc Ferro. ''The Great War''. London and New York: Routeladge Classics, p. 98.</ref> Germany began filling artillery shells with ] in 1902. ] was less readily available than phenol, and TNT is less powerful than picric acid, but the improved safety of munitions manufacturing and storage caused the replacement of picric acid by TNT for most military purposes between the World Wars.<ref name="brown"/> However, pure TNT was expensive to produce and most nations made some use of mixtures using cruder TNT and ammonium nitrate, some with other compounds included. These fills included Ammonal, Schneiderite and ]. The latter was still in wide use in ].
{{Main|Armor-piercing shot and shell}}


The percentage of shell weight taken up by its explosive fill increased steadily throughout the 20th Century. Less than 10% was usual in the first few decades; by ], leading designs were around 15%. However, British researchers in that war identified 25% as being the optimal design for ] purposes, based on the recognition that far smaller fragments than hitherto would give a better effect. This guideline was achieved by the 1960s with the 155&nbsp;mm L15 shell, developed as part of the German-British ] program. The key requirement for increasing the HE content without increasing shell weight was to reduce the thickness of shell walls, which required improvements in high tensile steel.
The earliest naval and ] shells had to withstand the extreme shock of punching through ]. Shells designed for this purpose sometimes had a greatly strengthened case with a small bursting charge, and sometimes were solid metal, i.e. ]. In either case, they almost always had a specially hardened and shaped nose to facilitate penetration.
A further refinement of such designs improved penetration by adding a softer metal cap to the penetrating nose giving '''APC''' (Armour piercing - capped). The softer cap ]s the initial shock that would otherwise shatter the round. The best profile for the cap is not the most aerodynamic; this can be remedied by adding a further hollow cap of suitable shape: '''APCBC''' (APC + Ballistic Cap).<ref> illustration at bottom of page on working principle of APCBC type shell</ref>
AP shells with a bursting charge were sometimes distinguished by appending the suffix "HE". At the beginning of the Second World War, solid shot AP projectiles were common. As the war progressed, ordnance design evolved so that APHE became the more common design approach for ] shells of 75&nbsp;mm caliber and larger, and more common in naval shell design as well. In modern ordnance, most full caliber AP shells are APHE designs.


] shells, circa 1917]]
===Armour-piercing, discarding-sabot (APDS)===
The most common shell type is ], commonly referred to simply as HE. They have a strong ] case, a bursting charge, and a ]. The fuse detonates the bursting charge which shatters the case and scatters hot, sharp case pieces (''fragments'', ''splinters'') at high velocity. Most of the damage to soft targets, such as unprotected personnel, is caused by shell pieces rather than by the blast. The term "shrapnel" is sometimes used to describe the shell pieces, but ]s functioned very differently and are long obsolete. The speed of fragments is limited by ]. Depending on the type of ] used the HE shell can be set to burst on the ground (percussion), in the air above the ground, which is called air burst<ref>{{cite book |author1=Marc Garlasco |author2=Fred Abrahams |author3=Bill van Esveld |author4=Fares Akram |author5=Darryl Li |editor1=Joe Stock |editor2=James Ross |editor3=Iain Levine |title=Rain of Fire: Israel's Unlawful Use of White Phosphorus in Gaza |url=https://books.google.com/books?id=nBXSdMCUuBIC&pg=PA3 |year=2009 |publisher=Human Rights Watch |isbn=978-1-56432-458-0 |page=3}}</ref> (time or ]), or after penetrating a short distance into the ground (percussion with delay, either to transmit more ground shock to covered positions, or to reduce the spread of fragments). Projectiles with enhanced fragmentation are called high-explosive fragmentation (HE-FRAG).<ref>{{cite web |url=https://www.forecastinternational.com/archive/disp_pdf.cfm?DACH_RECNO=818 |title=Ordnance & Munitions Forecast |date=2010 |website=www.forecastinternational.com}}</ref>
{{Main|Armour-piercing discarding sabot}}


] and TNT mixtures are the standard chemicals used, notably ] and ]. The introduction of "insensitive munition" requirements, agreements and regulations in the 1990s caused modern western designs to use various types of plastic bonded explosives (PBX) based on RDX.
APDS was developed by engineers working for the ] ] company, and was fielded in two calibers (75&nbsp;mm/57&nbsp;mm for the Mle1897/33 75&nbsp;mm ] ], 37&nbsp;mm/25&nbsp;mm for several 37&nbsp;mm gun types) just before the French-German armistice of 1940. The ] engineers, having been evacuated to the ], joined ongoing APDS development efforts there, culminating in significant improvements to the concept and its realization. British APDS ordnance for their ] and ] ]s was fielded in March 1944.


====Common====
The armor-piercing concept calls for more penetration capability than the target's armour thickness. Generally, the penetration capability of an armor piercing round is proportional to the projectile's kinetic energy. Thus an efficient means of achieving increased penetrating power is increased velocity for the projectile. However, projectile impact against armour at higher velocity causes greater levels of shock. Materials have characteristic maximum levels of shock capacity, beyond which they may shatter on impact. At relatively high impact velocities, steel is no longer an adequate material for armor piercing rounds due to shatter. Tungsten and tungsten alloys are suitable for use in even higher velocity armour piercing rounds due to their very high shock tolerance and shatter resistance. However, tungsten is very dense, and tungsten rounds of full-caliber design are too massive to be accelerated to an efficient velocity for maximized kinetic energy. This is overcome by using a reduced-diameter tungsten shot, surrounded by a lightweight outer carrier, the ''sabot'' (a French word for a wooden shoe). This combination allows the firing of a smaller diameter (thus lower mass/aerodynamic resistance/penetration resistance) projectile with a larger area of expanding-propellant "push", thus a greater propelling force/acceleration/resulting kinetic energy.
]
] designated in the early (i.e. 1800s) British explosive shells were filled with "low explosives" such as "P&nbsp;mixture" (gunpowder) and usually with a fuze in the nose. Common shells on bursting (non-detonating) tended to break into relatively large fragments which continued along the shell's trajectory rather than laterally. They had some incendiary effect.


In the late 19th century "double common shells" were developed, lengthened so as to approach twice the standard shell weight, to carry more powder and hence increase explosive effect. They suffered from instability in flight and low velocity and were not widely used.
Once outside the barrel, the sabot is stripped off by a combination of ] and aerodynamic force, giving the shot low drag in flight. For a given caliber the use of APDS ammunition can effectively double the anti-tank performance of a gun.


In 1914, common shells with a diameter of 6-inches and larger were of cast steel, while smaller diameter shells were of forged steel for service and cast iron for practice.{{sfnp|Treatise on Ammunition|1915|pages= 158, 159, 198 }} They were replaced by "common lyddite" shells in the late 1890s but some stocks remained as late as 1914. In British service common shells were typically painted black with a red band behind the nose to indicate the shell was filled.
===Armour-piercing, fin-stabilized, discarding-sabot (APFSDS)===
{{Main|Kinetic energy penetrator}}


====Common pointed====
]
] ] common pointed shell]]
An Armour-Piercing, Fin-Stabilised, Discarding Sabot (]) projectile uses the sabot principle with fin (drag) stabilisation. A long, thin sub-projectile has increased sectional ] and thus penetration potential. However, once a projectile has a length-to-diameter ratio greater than 10 (less for higher density projectiles), spin stabilisation becomes ineffective. Instead, drag stabilisation is used, by means of fins attached to the base of the sub-projectile, making it look like a large metal arrow.
], or CP were a type of common shell used in naval service from the 1890s – 1910s which had a solid nose and a percussion fuze in the base rather than the common shell's nose fuze. The ogival two C.R.H. solid pointed nose was considered suitable for attacking shipping but was not armour-piercing – the main function was still explosive. They were of cast or forged (three- and six-pounder) steel and contained a gunpowder bursting charge slightly smaller than that of a common shell, a trade off for the longer heavier nose.{{sfnp|Treatise on Ammunition|1915|page= 161 }}


In British service common pointed shells were typically painted black, except 12-pounder shells specific for QF guns which were painted lead colour to distinguish them from 12-pounder shells usable with both BL and QF guns. A red ring behind the nose indicated the shell was filled.
Large calibre APFSDS projectiles are usually fired from smooth-bore (unrifled) barrels, though they can be and often are fired from rifled guns. This is especially true when fired from small to medium calibre weapon systems. APFSDS projectiles are usually made from high-density metal alloys such as ] heavy alloys (WHA) or ] (DU); ] was used for some early Soviet projectiles. DU alloys are cheaper and have better penetration than others as they are denser and self-sharpening, but they present radiological and toxic hazards that remain on the battlefield. The less toxic WHAs are preferred in most countries except the ], ], and ].


By World War II they were superseded in Royal Navy service by common pointed capped (CPC) and semi-armour piercing (]), filled with TNT.
=== Armour-piercing, composite rigid (APCR) ===<!-- This section is linked from ] -->
Armour-Piercing, Composite Rigid is a British term, the US term for the design is '''High Velocity Armour Piercing''' (HVAP) and German, ''Hartkernmunition''. The APCR projectile is a core of a high-density hard material such as ] surrounded by a full-bore shell of a lighter material (e.g. an ] alloy). Most APCR projectiles are shaped like the standard APCBC shot (although some of the German Pzgr. 40 and some Soviet designs resemble a stubby arrow), but the projectile is lighter: up to half the weight of a standard AP shot of the same calibre. The lighter weight allows a higher velocity. The kinetic energy of the shot is concentrated in the core and hence on a smaller impact area, improving the penetration of the target armour. To prevent shattering on impact, a shock-buffering cap is placed between the core and the outer ballistic shell as with APC rounds. However, because the shot is lighter but still the same overall size it has poorer ballistic qualities, and loses velocity and accuracy at longer ranges. The APCR was superseded by the APDS which dispensed with the outer light alloy shell once the shot had left the barrel.
The Germans used an APCR round, the ''Panzergranate'' 40 (Pzgr.40) "arrowhead" shot, for their 5&nbsp;cm Pak 38 antitank guns in 1942, and it was also developed for their 75 and 88&nbsp;mm antitank and tank guns, and for anti-tank guns mounted in German aircraft. Shortages of the key component, tungsten, led to the Germans dropping the use of APCR during late World War II because it was more efficiently used in industrial applications such as machine tools.


====Common lyddite====
===Armour-piercing, composite non-rigid (APCNR)===
]
Armour-Piercing, Composite Non-Rigid (APCNR), the British term, but the more common terms are ''squeeze-bore'' and ''tapered bore'' and are based on the same projectile design as the APCR - a high density core within a shell of soft iron or other alloy, but it is fired by a gun with a tapered barrel, either a taper in a fixed barrel (''Gerlich'' design in German use; original development efforts in the late 1930s in Germany, Denmark and France) or a final added section as in the British "squeeze -bore" (]). The projectile is initially full-bore, but the outer shell is deformed as it passes through the taper. Flanges or studs are swaged down in the tapered section, so that as it leaves the muzzle the projectile has a smaller overall cross-section.<ref>note drawing below photo antitank cannon on this page is excellent in explaining the APCNR principle </ref> This gives it better flight characteristics with a higher sectional density and the projectile retains velocity better at longer ranges than an undeformed shell of the same weight. As with the APCR the kinetic energy of the round is concentrated at the core on impact. The initial velocity of the round is greatly increased by the decrease of barrel cross-sectional area toward the muzzle, resulting in a commensurate increase in velocity of the expanding propellant gases.
] were British explosive shells filled with ] were initially designated "common lyddite" and beginning in 1896 were the first British generation of modern "high explosive" shells. Lyddite is ] fused at {{convert|280|°F|°C|abbr=on}} and allowed to solidify, producing a much denser dark-yellow form which is not affected by moisture and is easier to detonate than the liquid form. Its French equivalent was "melinite", Japanese equivalent was "shimose". Common lyddite shells "detonated" and fragmented into small pieces in all directions, with no incendiary effect. For maximum destructive effect the explosion needed to be delayed until the shell had penetrated its target.
The Germans deployed their ], their initial tapered barrel design, as a light anti-tank weapon early in the Second World War, but although HE projectiles were designed and put into service, the limiting of the shell diameter to the muzzle bore reduced their mass to only 85&nbsp;grams and hence reduced their effectiveness. The British used the Littlejohn squeeze-bore adaptor which could be attached or removed as necessary, to extend the usefulness of their ] gun in armoured cars and light tanks which could not take a larger gun. Although a full range of shells and shot could be used, changing the adaptor in the heat of battle was highly impractical. The APCNR was superseded by the APDS design which was compatible with non-tapered barrels.


Early shells had walls of the same thickness for the whole length, later shells had walls thicker at the base and thinning towards the nose. This was found to give greater strength and provide more space for explosive.{{sfnp|Treatise on Ammunition|1915|pages=37, 158, 159, 198 }} Later shells had ], more pointed and hence streamlined than earlier 2&nbsp;c.r.h. designs.
===High-explosive, anti-tank (HEAT)===
{{Main|High explosive anti-tank}}


Proper detonation of a lyddite shell would show black to grey smoke, or white from the steam of a water detonation. Yellow smoke indicated simple explosion rather than detonation, and failure to reliably detonate was a problem with lyddite, especially in its earlier usage. To improve the detonation "exploders" with a small quantity of picric powder or even of TNT (in smaller shells, 3&nbsp;pdr, 12&nbsp;pdr – 4.7&nbsp;inch) was loaded between the fuze and the main lyddite filling or in a thin tube running through most of the shell's length.
] shells are a type of ] used to defeat armoured vehicles. They are extremely efficient at defeating plain steel armour but less so against later composite and ]. The effectiveness of the shell is independent of its velocity, and hence the range: it is as effective at 1000 metres as at 100 metres. The speed can even be zero in the case where a soldier simply places a magnetic mine onto a tank's armor plate. A HEAT charge is most effective when detonated at a certain, optimal, distance in front of the target and HEAT shells are usually distinguished by a long, thin nose probe sticking out in front of the rest of the shell and detonating it at the correct distance, e.g., ] bomb. HEAT shells are less effective if spun (i.e., fired from a rifled gun).


Lyddite presented a major safety problem because it reacted dangerously with metal bases. This required that the interior of shells had to be varnished, the exterior had to be painted with leadless paint and the fuze-hole had to be made of a leadless alloy. Fuzes containing any lead could not be used with it.
===Discarding-sabot shell (DSS)===
In principle the same as the APDS shot but applied to high-explosive shells. It is a means to deliver a shell to a greater range. The design of the sub-projectile carried inside the sabot can be optimised for aerodynamic properties and the sabot can be built for best performance within the barrel of the gun. The principle was developed by a Frenchman, ], in the 1930s. With the occupation of France, the Germans took the idea for application to anti-aircraft guns—a DSS projectile could be fired at a higher muzzle velocity and reach the target altitude more quickly, simplifying aiming and allowing the target aircraft less time to change course.


When World War I began Britain was replacing lyddite with modern "high explosive" (HE) such as TNT. After World War&nbsp;I the term "common lyddite" was dropped, and remaining stocks of lyddite-filled shells were referred to as HE (high explosive) shell filled lyddite. Hence "common" faded from use, replaced by "HE" as the explosive shell designation.
===High-explosive, squash-head (HESH) or high-explosive plastic (HEP)===
{{Main|High explosive squash head}}


Common lyddite shells in British service were painted yellow, with a red ring behind the nose to indicate the shell had been filled.
'''HESH''' is another anti-tank shell based on the use of explosive. Developed by the ] inventor Sir ] in World War II for use against fortifications. A thin-walled shell case contains a large charge of a ]. On impact the explosive flattens, without detonating, against the face of the armour, and is then detonated by the fuze. Energy is transferred through the armour plate: when the compressive shock reflects off the air/metal interface on the inner face of the armour, it is transformed into a tension wave which ]s a "scab" of metal off into the tank damaging the equipment and crew without actually penetrating the armour.


====Mine shell====
HESH is completely defeated by ], so long as the plates are individually able to withstand the explosion. It is still considered useful as not all vehicles are equipped with spaced armour, and it is also the most effective munition for demolishing brick and concrete. HESH shells, unlike HEAT shells, are best fired from rifled guns.
{{Main|Mine shell}}

The mine shell is a particular form of HE shell developed for use in small caliber weapons such as 20&nbsp;mm to 30&nbsp;mm cannon. Small HE shells of conventional design can contain only a limited amount of explosive. By using a thin-walled steel casing of high tensile strength, a larger explosive charge can be used. Most commonly the explosive charge also was a more expensive but higher-detonation-energy type.
===Proof shot===
{{Main|Proof Shot}}

A ] is not used in combat but to confirm that a new gun barrel can withstand operational stresses. The proof shot is heavier than a normal shot or shell, and an oversize propelling charge is used, subjecting the barrel to greater than normal stress. The proof shot is inert (no explosive or functioning filling) and is often a solid unit, although water, sand or iron powder filled versions may be used for testing the gun mounting. Although the proof shot resembles a functioning shell (of whatever sort) so that it behaves as a real shell in the barrel, it is not aerodynamic as its job is over once it has left the muzzle of the gun. Consequently it travels a much shorter distance and is usually stopped by an earth bank for safety measures.


The ''mine shell'' concept was invented by the Germans in the Second World War primarily for use in aircraft guns intended to be fired at opposing aircraft. Mine shells produced relatively little damage due to fragments, but a much more powerful blast. The ] structures and skins of Second World War ] were readily damaged by this greater level of blast.
The gun, operated remotely for safety in case it fails, fires the proof shot, and is then inspected for damage. If the barrel passes the examination "]s" are added to the barrel. The gun can be expected to handle normal ammunition, which subjects it to less stress than the proof shot, without being damaged.


===Shrapnel shells=== ===Shrapnel shells===
] shrapnel round</center>]]
{{Main|Shrapnel shell}} {{Main|Shrapnel shell}}
]
Shrapnel shells were an early (1784) anti-personnel munition which delivered large numbers of ]s at ranges far greater than rifles or machine guns could attain - up to 6,500 yards by 1914. A typical shrapnel shell as used in ] was streamlined, 75&nbsp;mm (3&nbsp;inch) in diameter and contained approximately 300 lead-antimony balls (bullets), each approximately 1/2&nbsp;inch in diameter. Shrapnel used the principle that the bullets encountered much less air resistance if they travelled most of their journey packed together in a single streamlined shell than they would if they travelled individually, and could hence attain a far greater range.
]s are an anti-personnel munition which delivered large numbers of ]s at ranges far greater than rifles or machine guns could attain – up to 6,500 yards by 1914. A typical shrapnel shell as used in World War I was streamlined, 75&nbsp;mm (3&nbsp;in) in diameter and contained approximately 300 lead–antimony balls (bullets), each around 1/2-inch in diameter. Shrapnel used the principle that the bullets encountered much less air resistance if they travelled most of their journey packed together in a single streamlined shell than they would if they travelled individually, and could hence attain a far greater range.


The gunner set the shell's ] so that it was timed to burst as it was angling down towards the ground just before it reached its target (ideally about 150 yards before, and 60–100 feet above the ground<ref>I.V. Hogg & L.F. Thurston, "British Artillery Weapons & Ammunition". London: Ian Allan, 1972. Page 215.</ref>). The fuze then ignited a small "bursting charge" in the base of the shell which fired the balls forward out of the front of the shell case, adding approximately 200 – 250&nbsp;ft/second to the existing velocity of 750–1200 &nbsp;ft/second. The shell case dropped to the ground and the bullets continued in an expanding cone shape before striking the ground over an area approximately 250 yards x 30 yards in the case of the US 3&nbsp;inch shell.<ref>Douglas T Hamilton, </ref> The effect was of a large shotgun blast just in front of and above the target, and was deadly against troops in the open. A trained gun team could fire 20 such shells per minute, with a total of 6,000 balls, which compared very favourably with rifles and machine-guns. The gunner set the shell's ] so that it was timed to burst as it was angling down towards the ground just before it reached its target (ideally about 150 yards before, and 60–100 feet above the ground<ref>I.V. Hogg & L.F. Thurston, ''British Artillery Weapons & Ammunition''. London: Ian Allan, 1972. Page 215.</ref>). The fuze then ignited a small "bursting charge" in the base of the shell which fired the balls forward out of the front of the shell case, adding 200–250&nbsp;ft/second to the existing velocity of 750–1200&nbsp;ft/second. The shell body dropped to the ground mostly intact and the bullets continued in an expanding cone shape before striking the ground over an area approximately 250 yards × 30 yards in the case of the US 3-inch shell.<ref>Hamilton 1915, p. 13.</ref> The effect was of a large shotgun blast just in front of and above the target, and was deadly against troops in the open. A trained gun team could fire 20 such shells per minute, with a total of 6,000 balls, which compared very favorably with rifles and machine-guns.


However, shrapnel's relatively flat trajectory (it depended mainly on the shell's velocity for its lethality, and was only lethal in a forward direction) meant that it could not strike trained troops who avoided open spaces and instead used dead ground (dips), shelters, trenches, buildings, and trees for cover. It was of no use in destroying buildings or shelters. Hence it was replaced during ] by the high-explosive shell which exploded its fragments in all directions and could be fired by high-angle weapons such as howitzers, hence far more difficult to avoid. However, shrapnel's relatively flat trajectory (it depended mainly on the shell's velocity for its lethality, and was lethal only in the forward direction) meant that it could not strike trained troops who avoided open spaces and instead used dead ground (dips), shelters, trenches, buildings, and trees for cover. It was of no use in destroying buildings or shelters. Hence, it was replaced during World War I by the high-explosive shell, which exploded its fragments in all directions (and thus more difficult to avoid) and could be fired by high-angle weapons, such as howitzers.


===Cluster shells=== ===Cluster and sub-munition===
Cluster shells are a type of carrier shell or cargo munition. Like ]s, an artillery shell may be used to scatter smaller submunitions, including anti-personnel ]s, anti-tank top-attack munitions, and ]. These are generally far more lethal against both ] and ] than simple high-explosive shells, since the multiple munitions create a larger kill zone and increase the chance of achieving the direct hit necessary to kill armor. Most modern armies make significant use of ]s in their artillery batteries. Cluster shells are a type of carrier shell or cargo munition. Like ]s, an artillery shell may be used to scatter smaller sub-munitions, including anti-personnel ]s, anti-tank top-attack munitions, and ]. These are generally far more lethal against both ] and ] than simple high-explosive shells, since the multiple munitions create a larger kill zone and increase the chance of achieving the direct hit necessary to kill armour. Many modern armies make significant use of ]s in their artillery batteries.

However, in operational use submunitions have demonstrated a far higher malfunction rate than previously claimed, including those that have self-destruct mechanisms. This problem, the 'dirty battlefield", led to the ].


Artillery-scattered mines allow for the quick deployment of ]s into the path of the enemy without placing engineering units at risk, but artillery delivery may lead to an irregular and unpredictable minefield with more unexploded ordnance than if mines were individually placed. Artillery-scattered mines allow for the quick deployment of ]s into the path of the enemy without placing engineering units at risk, but artillery delivery may lead to an irregular and unpredictable minefield with more unexploded ordnance than if mines were individually placed.


Signatories of the ] have accepted restrictions on the use of cluster munitions, including artillery shells: the treaty requires that a weapon so defined must contain nine or fewer submunitions, which must each weigh more than 4 kilograms, be capable of detecting and engaging a single target, and contain electronic self-destruct and self-deactivation systems. Submunitions which weigh 20&nbsp;kg or more are not restricted.
Signatories of the ] have renounced the use of cluster munitions of all types where the carrier contains more than ten submunitions.


===Chemical=== ===Chemical===
]" agent at ] chemical weapons storage facility. Note the colour coding scheme on each shell.]] ] (sulfur mustard) agent at ] chemical weapons storage facility Note the colour-coding scheme on each shell.]]
Chemical shells contain just a small explosive charge to burst the shell, and a larger quantity of a ] such as a poison gas. Signatories of the ] have renounced such shells. Chemical shells contain just a small explosive charge to burst the shell, and a larger quantity of a ] or ] of some kind, in either liquid, gas or powdered form. In some cases such as the ] Sarin gas shell, the payload is stored as two precursor chemicals which are mixed after the shell is fired. Some examples designed to deliver powdered chemical agents, such as the ], were later repurposed as smoke/incendiary rounds containing powdered ].

Chemical shells were most commonly employed during the ]. Use of chemical agents of all kinds has been forbidden by numerous international treaties starting with the 1925 ] (not to be confused with the ]), with the 1993 ] being the most modern treaty which also outlaws production, stockpiling and transfer of such weapons. All signatories have renounced the use of both lethal chemical agents and incapacitating agents in warfare.

===Nuclear artillery===
{{main|Nuclear artillery}}

Nuclear artillery shells are used to provide battlefield scale nuclear weapons for tactical use. These range from the relatively small 155&nbsp;mm shell to the 406&nbsp;mm shell used by heavy battleship cannon and shore defense units equipped with the same guns.


===Non-lethal shells=== ===Non-lethal shells===
Line 151: Line 254:


====Smoke==== ====Smoke====
The smoke shell is designed to create a ]. The main types are bursting (those filled with white ] WP and a small HE bursting charge are best known) and base ejection (delivering three or four smoke canisters, or material impregnated with white phosphorus). Base ejection shells are a type of carrier shell or cargo munition. Smoke shells are used to create ]s to mask movements of friendly forces or disorient enemies, or to mark specific areas. The main types are bursting (using a payload powdered chemicals) and base ejection (delivering three or four smoke canisters which are deployed from the rear of the shell prior to impact, or a single canister containing submunitions distributed via a bursting charge). Base ejection shells are a type of carrier shell or cargo munition.


Base ejection smoke is usually white, however, coloured smoke has been used for marking purposes. The original canisters were non-burning, being filled with a compound that created smoke when it reacted with atmospheric moisture, modern ones use red phosphorus because of its multi-spectral properties. However, other compounds have been used, in World War II Germany used oleum (fuming sulphuric acid) and pumice. Base ejection smoke is usually white, however, colored smoke has been used for marking purposes. The original canisters typically used ]-] (HC), modern ones use ] because of its multi-spectral properties. However, other compounds have been used; in World War II, Germany used ] (fuming ]) and ].

Due to the nature of their payload, powder smoke shells using ] in particular have a secondary effect as ] weapons, though they are not as effective in this role as dedicated weapons using ].


==== Illumination ====<!-- This section is linked from ] and ] --> ==== Illumination ====<!-- This section is linked from ] and ] -->
] (orange, top), illuminating compound (green) and parachute (white, bottom)]]
{{Commonscat-inline|Star shell}}
Modern illuminating shells are a type of carrier shell or cargo munition. Those used in World War&nbsp;I were shrapnel pattern shells ejecting small burning "pots".
]]]

Modern illuminating shells are a type of carrier shell or cargo munition. Those used in World War I were shrapnel pattern shells ejecting small burning 'pots'.
A modern illumination shell has a time fuze that ejects a flare "package" through the base of the carrier shell at a standard height above ground (typically about 600&nbsp;metres), from where it slowly falls beneath a non-flammable ], illuminating the area below. The ejection process also initiates a ] flare emitting white or "black" ] light.


]]]
A modern illumination shell has a fuze which ejects the "candle" (a ] flare emitting white or ] light) at a calculated altitude, where it slowly drifts down beneath a heat resistant ], illuminating the area below. These are also known as ''starshell'' or ''star shell''.
Typically illumination flares burn for about 60&nbsp;seconds. These are also known as ''starshell'' or ''star shell''. Infrared illumination is a more recent development used to enhance the performance of night-vision devices. Both white- and black-light illuminating shells may be used to provide continuous illumination over an area for a period of time and may use several dispersed aimpoints to illuminate a large area. Alternatively, firing single illuminating shells may be coordinated with the adjustment of HE shell fire onto a target.


Coloured flare shells have also been used for target marking purposes. Colored flare shells have also been used for target marking and other signaling purposes.
{{clear}}


====Carrier==== ====Carrier====
The carrier shell is simply a hollow carrier equipped with a fuze which ejects the contents at a calculated time. They are often filled with ] leaflets (see external links), but can be filled with anything that meets the weight restrictions and is able to withstand the shock of firing. Famously, on Christmas Day 1899 during the ], the ]s fired into Ladysmith a carrier shell without fuze, which contained a ], two ]s and the message "compliments of the season". The shell is still kept in the museum at Ladysmith. The carrier shell is simply a hollow carrier equipped with a fuze that ejects the contents at a calculated time. They are often filled with ]s (see external links), but can be filled with anything that meets the weight restrictions and is able to withstand the shock of firing. Famously, on Christmas Day 1899 during the ], the ]s fired into Ladysmith a carrier shell without a fuze, which contained a ], two ]s and the message "compliments of the season". The shell is still kept in the museum at Ladysmith.


====Fireworks==== ====Proof shot====
{{Main|Proof test}}
Aerial ] bursts are created by shells. In the United States, consumer firework shells may not exceed 1.75 ]es in diameter.
A ] is not used in combat but to confirm that a new gun barrel can withstand operational stresses. The proof shot is heavier than a normal shot or shell, and an oversize propelling charge is used, subjecting the barrel to greater than normal stress. The proof shot is inert (no explosive or functioning filling) and is often a solid unit, although water, sand or iron powder filled versions may be used for testing the gun mounting. Although the proof shot resembles a functioning shell (of whatever sort), so that it behaves as a real shell in the barrel, it is not aerodynamic as its job is over once it has left the muzzle of the gun. Consequently, it travels a much shorter distance and is usually stopped by an earth bank for safety measures.


The gun, operated remotely for safety in case it fails, fires the proof shot, and is then inspected for damage. If the barrel passes the examination, "]s" are added to the barrel. The gun can be expected to handle normal ammunition, which subjects it to less stress than the proof shot, without being damaged.
==Unexploded shells==
{{Main|Unexploded ordnance}}
The ] of a shell has to keep the shell safe from accidental functioning during storage, due to (possibly) rough handling, fire, etc., it also has to survive the violent launch through the barrel, then reliably function at the correct time. To do this it has a number of arming mechanisms, which are successively enabled under the influence of the firing sequence.


===Guided shells===
Sometimes, one or more of these arming mechanisms fails, and if the fuze is installed on an HE shell, it fails to detonate on impact. More worrying and potentially far more hazardous are fully armed shells on which the fuze fails to initiate the HE firing. This may be due to shallow, low velocity or soft impact conditions. Whatever the reason for failure, such a shell is called a ''blind'' or ''unexploded ordnance (])''. The older term, "dud", is discouraged because it implies that the shell ''cannot'' detonate. Blind shells often litter old battlefields and depending on the impact velocity may be buried some distance into the earth, all remain potentially hazardous. For example, antitank ammunition with a piezoelectric fuze can be detonated by relatively light impact to the piezoelectric element, and others, depending on the type of fuze used can be detonated by even a small movement. The battlefields of the First World War still claim casualties today from leftover munitions. Thankfully modern electrical and mechanical fuzes are highly reliable: if they do not arm correctly they keep the initiation train out of line, or if electrical in nature, discharge any stored electrical energy.
{{main|Cannon-launched guided projectile|Precision-guided munition}}

Guided or "smart" ammunition features some method of guiding itself post-launch, usually through the addition of steering fins that alter its trajectory in an unpowered glide. Due to their much higher cost, they have yet to supplant unguided munitions in all applications.
==Guided shells==
Guided or "smart" ammunition have been developed in recent years, but have yet to supplant unguided munitions in all applications.
<gallery> <gallery>
Image:XM982 Excalibur inert.jpg|]. A GPS guided artillery shell. Image:XM982 Excalibur inert.jpg|], a GPS guided artillery shell
Image:Copperhead and tank.JPEG|] approaches a target tank Image:Copperhead and tank.JPEG|], a laser guided artillery shell, approaches a target tank
Image:SMArt 155 SubMunition for Artillery 2 cutaway.jpg|]. An anti-armor shell containing two autonomous, sensor-guided, fire-and-forget submunitions. Image:SMArt 155 SubMunition for Artillery 2 cutaway.jpg|], an anti-armour shell containing two autonomous, sensor-guided, ] submunitions
File:XM1156-PGK.svg|], an add-on GPS guidance system for artillery shells
File:BONUS 155 mm.jpg|], with ] and ] guided submunitions
</gallery> </gallery>


==Unexploded shells==
==Range enhancing technologies==
{{Main|Unexploded ordnance}}
Shells may be modified into ] and ] rounds to increase range.
{{unreferenced section|date=September 2023}}
The ] of a shell has to keep the shell safe from accidental functioning during storage, due to (possibly) rough handling, fire, etc. It also has to survive the violent launch through the barrel, then reliably function at the appropriate moment. To do this it has a number of arming mechanisms which are successively enabled under the influence of the firing sequence.


] shell dating from the ] (1990–1991)]]
==See also==
Sometimes, one or more of these arming mechanisms fail, resulting in a projectile that is unable to detonate. More worrying (and potentially far more hazardous) are fully armed shells on which the fuze fails to initiate the HE firing. This may be due to a shallow trajectory of fire, low-velocity firing or soft impact conditions. Whatever the reason for failure, such a shell is called a ''blind'' or ''unexploded ordnance (])'' (the older term, "dud", is discouraged because it implies that the shell ''cannot'' detonate.) Blind shells often litter old battlefields; depending on the impact velocity, they may be buried some distance into the earth, all the while remaining potentially hazardous. For example, antitank ammunition with a piezoelectric fuze can be detonated by relatively light impact to the piezoelectric element, and others, depending on the type of fuze used, can be detonated by even a small movement. The battlefields of the First World War still claim casualties today from leftover munitions. Modern electrical and mechanical fuzes are highly reliable: if they do not arm correctly, they keep the initiation train out of line or (if electrical in nature) discharge any stored electrical energy.
* ]
* ] - German Mine Clearer


==Notes== ==References==
{{Reflist}} {{Reflist}}


==References== ===Sources===
*Douglas T Hamilton, * Hamilton, Douglas T. (1915). . New York: Industrial Press.
*Douglas T Hamilton, * Hamilton, Douglas T. (1916). . New York: Industrial Press.
*Hogg, OFG. 1970. “Artillery: its origin, heyday and decline”. London: C Hurst and Company. * Hogg, O. F. G. (1970). "Artillery: Its Origin, Heyday and Decline". London: C. Hurst and Company.


==External links== ==External links==
{{Commons category|Artillery ammunition}}
* {{dead link|date=December 2010}}: A website about airdropped, shelled or rocket fired propaganda leaflets. Example artillery shells for spreading propaganda.
* – with photograph of exploded shell reassembled
* {{webarchive |url=https://web.archive.org/web/20070930184557/http://members.home.nl/ww2propaganda/spread5.htm |date=30 September 2007 |title=World War II propaganda leaflets }}: A website about airdropped, shelled or rocket fired propaganda leaflets. Example artillery shells for spreading propaganda.
* *
* – video explanation
* : 5&nbsp;inch 54 caliber naval gun (5/54) shell.

{{Authority control}}


{{DEFAULTSORT:Shell (Projectile)}} {{DEFAULTSORT:Shell (Projectile)}}
] ]
] ]
] ]
]

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

Latest revision as of 00:42, 2 January 2025

Payload-carrying projectile This article is about the artillery projectile. For the small arms cartridge, see shotgun shell.

Some sectioned shells from the First World War. From left to right: 90 mm shrapnel shell, 120 mm pig iron incendiary shell, 77/14 model – 75 mm high-explosive shell, model 16–75 mm shrapnel shell.
US scientists with a full-scale cut-away model of the W48 155 millimeter nuclear artillery shell, a very small tactical nuclear weapon with an explosive yield equivalent to 72 tons of TNT (0.072 kiloton). It could be fired from any standard 155 mm (6.1 inch) howitzer (e.g., the M114 or M198).
155 mm M107 projectiles. All have fuzes fitted.

A shell, in a modern military context, is a projectile whose payload contains an explosive, incendiary, or other chemical filling. Originally it was called a bombshell, contrasting with solid shells used for early rifled artillery, but "shell" has come to be unambiguous in a military context. A shell can hold a tracer.

All explosive- and incendiary-filled projectiles, particularly for mortars, were originally called grenades, derived from the French word for pomegranate, so called because of the similarity of shape and that the multi-seeded fruit resembles the powder-filled, fragmentizing bomb. Words cognate with grenade are still used for an artillery or mortar projectile in some European languages.

Shells are usually large-caliber projectiles fired by artillery, armoured fighting vehicles (e.g. tanks, assault guns, and mortar carriers), warships, and autocannons. The shape is usually a cylinder topped by an ogive-tipped nose cone for good aerodynamic performance, and possibly with a tapered boat tail; but some specialized types differ widely.

Background

Gunpowder is a low explosive, meaning it will not create a concussive, brisant explosion unless it is contained, as in a modern-day pipe bomb or pressure cooker bomb. Early grenades were hollow cast-iron balls filled with gunpowder, and "shells" were similar devices designed to be shot from artillery in place of solid cannonballs ("shot"). Metonymically, the term "shell", from the casing, came to mean the entire munition.

In a gunpowder-based shell, the casing was intrinsic to generating the explosion, and thus had to be strong and thick. Its fragments could do considerable damage, but each shell broke into only a few large pieces. Further developments led to shells which would fragment into smaller pieces. The advent of high explosives such as TNT removed the need for a pressure-holding casing, so the casing of later shells only needed to contain the munition, and, if desired, to produce shrapnel. The term "shell," however, was sufficiently established that it remained as the term for such munitions.

Hollow shells filled with gunpowder needed a fuse that was either impact triggered (percussion) or time delayed. Percussion fuses with a spherical projectile presented a challenge because there was no way of ensuring that the impact mechanism contacted the target. Therefore, ball shells needed a time fuse that was ignited before or during firing and burned until the shell reached its target.

Early shells

See also: History of gunpowder
The "flying-cloud thunderclap-eruptor" cannon from the Huolongjing

Cast iron shells packed with gunpowder have been used in warfare since at least early 13th century China. Hollow, gunpowder-packed shells made of cast iron used during the Song dynasty (960-1279) are described in the early Ming Dynasty Chinese military manual Huolongjing, written in the mid 14th century. The History of Jin 《金史》 (compiled by 1345) states that in 1232, as the Mongol general Subutai (1176–1248) descended on the Jin stronghold of Kaifeng, the defenders had a "thunder crash bomb" which "consisted of gunpowder put into an iron container ... then when the fuse was lit (and the projectile shot off) there was a great explosion the noise whereof was like thunder, audible for more than thirty miles, and the vegetation was scorched and blasted by the heat over an area of more than half a mou. When hit, even iron armour was quite pierced through." Archeological examples of these shells from the 13th century Mongol invasions of Japan have been recovered from a shipwreck.

Shells were used in combat by the Republic of Venice at Jadra in 1376. Shells with fuses were used at the 1421 siege of St Boniface in Corsica. These were two hollowed hemispheres of stone or bronze held together by an iron hoop. At least since the 16th century grenades made of ceramics or glass were in use in Central Europe. A hoard of several hundred ceramic grenades dated to the 17th century was discovered during building works in front of a bastion of the Bavarian city of Ingolstadt, Germany. Many of the grenades contained their original black-powder loads and igniters. Most probably the grenades were intentionally dumped in the moat of the bastion before the year 1723. An early problem was that there was no means of precisely measuring the time to detonation – reliable fuses did not yet exist, and the burning time of the powder fuse was subject to considerable trial and error. Early powder-burning fuses had to be loaded fuse down to be ignited by firing or a portfire or slow match put down the barrel to light the fuse. Other shells were wrapped in bitumen cloth, which would ignite during the firing and in turn ignite a powder fuse. Nevertheless, shells came into regular use in the 16th century, for example, a 1543 English mortar shell was filled with "wildfire."

A mortar with a hollowed shell from the Boshin war

By the 18th century, it was known that if loaded toward the muzzle instead, the fuse could be lit by the flash through the windage between the shell and the barrel. At about this time, shells began to be employed for horizontal fire from howitzers with a small propelling charge and, in 1779, experiments demonstrated that they could be used from guns with heavier charges.

The use of exploding shells from field artillery became relatively commonplace from early in the 19th century. Until the mid 19th century, shells remained as simple exploding spheres that used gunpowder, set off by a slow burning fuse. They were usually made of cast iron, but bronze, lead, brass and even glass shell casings were experimented with. The word bomb encompassed them at the time, as heard in the lyrics of The Star-Spangled Banner ("the bombs bursting in air"), although today that sense of bomb is obsolete. Typically, the thickness of the metal body was about a sixth of their diameter, and they were about two-thirds the weight of solid shot of the same caliber.

To ensure that shells were loaded with their fuses toward the muzzle, they were attached to wooden bottoms called sabots. In 1819, a committee of British artillery officers recognized that they were essential stores and in 1830 Britain standardized sabot thickness as a half-inch. The sabot was also intended to reduce jamming during loading. Despite the use of exploding shells, the use of smoothbore cannons firing spherical projectiles of shot remained the dominant artillery method until the 1850s.

Modern shell

The mid–19th century saw a revolution in artillery, with the introduction of the first practical rifled breech loading weapons. The new methods resulted in the reshaping of the spherical shell into its modern recognizable cylindro-conoidal form. This shape greatly improved the in-flight stability of the projectile and meant that the primitive time fuzes could be replaced with the percussion fuze situated in the nose of the shell. The new shape also meant that further, armour-piercing designs could be used.

During the 20th century, shells became increasingly streamlined. In World War I, ogives were typically two circular radius head (crh) – the curve was a segment of a circle having a radius of twice the shell caliber. After that war, ogive shapes became more complex and elongated. From the 1960s, higher quality steels were introduced by some countries for their HE shells, this enabled thinner shell walls with less weight of metal and hence a greater weight of explosive. Ogives were further elongated to improve their ballistic performance.

Rifled breech loaders

Main article: Rifled breech loader
The Armstrong gun was a pivotal development for modern artillery as the first practical rifled breech loader. Pictured, deployed by Japan during the Boshin war (1868–69).

Advances in metallurgy in the industrial era allowed for the construction of rifled breech-loading guns that could fire at a much greater muzzle velocity. After the British artillery was shown up in the Crimean War as having barely changed since the Napoleonic Wars, the industrialist William Armstrong was awarded a contract by the government to design a new piece of artillery. Production started in 1855 at the Elswick Ordnance Company and the Royal Arsenal at Woolwich.

The piece was rifled, which allowed for a much more accurate and powerful action. Although rifling had been tried on small arms since the 15th century, the necessary machinery to accurately rifle artillery only became available in the mid-19th century. Martin von Wahrendorff and Joseph Whitworth independently produced rifled cannons in the 1840s, but it was Armstrong's gun that was first to see widespread use during the Crimean War. The cast iron shell of the Armstrong gun was similar in shape to a Minié ball and had a thin lead coating which made it fractionally larger than the gun's bore and which engaged with the gun's rifling grooves to impart spin to the shell. This spin, together with the elimination of windage as a result of the tight fit, enabled the gun to achieve greater range and accuracy than existing smooth-bore muzzle-loaders with a smaller powder charge.

The gun was also a breech-loader. Although attempts at breech-loading mechanisms had been made since medieval times, the essential engineering problem was that the mechanism could not withstand the explosive charge. It was only with the advances in metallurgy and precision engineering capabilities during the Industrial Revolution that Armstrong was able to construct a viable solution. Another innovative feature was what Armstrong called its "grip", which was essentially a squeeze bore; the 6 inches of the bore at the muzzle end was of slightly smaller diameter, which centered the shell before it left the barrel and at the same time slightly swaged down its lead coating, reducing its diameter and slightly improving its ballistic qualities.

Rifled guns were also developed elsewhere – by Major Giovanni Cavalli and Baron Martin von Wahrendorff in Sweden, Krupp in Germany and the Wiard gun in the United States. However, rifled barrels required some means of engaging the shell with the rifling. Lead coated shells were used with the Armstrong gun, but were not satisfactory so studded projectiles were adopted. However, these did not seal the gap between shell and barrel. Wads at the shell base were also tried without success.

In 1878, the British adopted a copper "gas-check" at the base of their studded projectiles and in 1879 tried a rotating gas check to replace the studs, leading to the 1881 automatic gas-check. This was soon followed by the Vavaseur copper driving band as part of the projectile. The driving band rotated the projectile, centered it in the bore and prevented gas escaping forwards. A driving band has to be soft but tough enough to prevent stripping by rotational and engraving stresses. Copper is generally most suitable but cupronickel or gilding metal were also used.

Percussion fuze

Main article: Artillery fuze
Early British "direct action" nose impact fuze of 1900 with no safety or arming mechanism, relying on heavy direct physical impact to detonate

Although an early percussion fuze appeared in 1650 that used a flint to create sparks to ignite the powder, the shell had to fall in a particular way for this to work and this did not work with spherical projectiles. An additional problem was finding a suitably stable "percussion powder". Progress was not possible until the discovery of mercury fulminate in 1800, leading to priming mixtures for small arms patented by the Rev Alexander Forsyth, and the copper percussion cap in 1818.

The percussion fuze was adopted by Britain in 1842. Many designs were jointly examined by the army and navy, but were unsatisfactory, probably because of the safety and arming features. However, in 1846 the design by Quartermaster Freeburn of the Royal Artillery was adopted by the army. It was a wooden fuze about 6 inches long and used shear wire to hold blocks between the fuze magazine and a burning match. The match was ignited by propellant flash and the shear wire broke on impact. A British naval percussion fuze made of metal did not appear until 1861.

Types of fuzes

Smokeless powders

Main article: Smokeless powder
Poudre B was the first practical smokeless powder

Gunpowder was used as the only form of explosive up until the end of the 19th century. Guns using black powder ammunition would have their view obscured by a huge cloud of smoke and concealed shooters were given away by a cloud of smoke over the firing position. Guncotton, a nitrocellulose-based material, was discovered by Swiss chemist Christian Friedrich Schönbein in 1846. He promoted its use as a blasting explosive and sold manufacturing rights to the Austrian Empire. Guncotton was more powerful than gunpowder, but at the same time was somewhat more unstable. John Taylor obtained an English patent for guncotton; and John Hall & Sons began manufacture in Faversham. British interest waned after an explosion destroyed the Faversham factory in 1847. Austrian Baron Wilhelm Lenk von Wolfsberg built two guncotton plants producing artillery propellant, but it was dangerous under field conditions, and guns that could fire thousands of rounds using gunpowder would reach their service life after only a few hundred shots with the more powerful guncotton.

Small arms could not withstand the pressures generated by guncotton. After one of the Austrian factories blew up in 1862, Thomas Prentice & Company began manufacturing guncotton in Stowmarket in 1863; and British War Office chemist Sir Frederick Abel began thorough research at Waltham Abbey Royal Gunpowder Mills leading to a manufacturing process that eliminated the impurities in nitrocellulose making it safer to produce and a stable product safer to handle. Abel patented this process in 1865, when the second Austrian guncotton factory exploded. After the Stowmarket factory exploded in 1871, Waltham Abbey began production of guncotton for torpedo and mine warheads.

Sir James Dewar developed the cordite explosive in 1889

In 1884, Paul Vieille invented a smokeless powder called Poudre B (short for poudre blanche—white powder, as distinguished from black powder) made from 68.2% insoluble nitrocellulose, 29.8% soluble nitrocellusose gelatinized with ether and 2% paraffin. This was adopted for the Lebel rifle. Vieille's powder revolutionized the effectiveness of small guns, because it gave off almost no smoke and was three times more powerful than black powder. Higher muzzle velocity meant a flatter trajectory and less wind drift and bullet drop, making 1000 meter shots practicable. Other European countries swiftly followed and started using their own versions of Poudre B, the first being Germany and Austria which introduced new weapons in 1888. Subsequently, Poudre B was modified several times with various compounds being added and removed. Krupp began adding diphenylamine as a stabilizer in 1888.

Britain conducted trials on all the various types of propellant brought to their attention, but were dissatisfied with them all and sought something superior to all existing types. In 1889, Sir Frederick Abel, James Dewar and W. Kellner patented (No. 5614 and No. 11,664 in the names of Abel and Dewar) a new formulation that was manufactured at the Royal Gunpowder Factory at Waltham Abbey. It entered British service in 1891 as Cordite Mark 1. Its main composition was 58% nitro-glycerine, 37% guncotton and 3% mineral jelly. A modified version, Cordite MD, entered service in 1901, this increased guncotton to 65% and reduced nitro-glycerine to 30%, this change reduced the combustion temperature and hence erosion and barrel wear. Cordite could be made to burn more slowly which reduced maximum pressure in the chamber (hence lighter breeches, etc.), but longer high pressure – significant improvements over gunpowder. Cordite could be made in any desired shape or size. The creation of cordite led to a lengthy court battle between Nobel, Maxim, and another inventor over alleged British patent infringement.

Other shell types

Drawing of a carcass shell

A variety of fillings have been used in shells throughout history. An incendiary shell was invented by Valturio in 1460. The carcass shell was first used by the French under Louis XIV in 1672. Initially in the shape of an oblong in an iron frame (with poor ballistic properties) it evolved into a spherical shell. Their use continued well into the 19th century.

A modern version of the incendiary shell was developed in 1857 by the British and was known as Martin's shell after its inventor. The shell was filled with molten iron and was intended to break up on impact with an enemy ship, splashing molten iron on the target. It was used by the Royal Navy between 1860 and 1869, replacing heated shot as an anti-ship, incendiary projectile.

Two patterns of incendiary shell were used by the British in World War I, one designed for use against Zeppelins.

Similar to incendiary shells were star shells, designed for illumination rather than arson. Sometimes called lightballs they were in use from the 17th century onwards. The British adopted parachute lightballs in 1866 for 10-, 8- and 51⁄2-inch calibers. The 10-inch was not officially declared obsolete until 1920.

Smoke balls also date back to the 17th century, British ones contained a mix of saltpetre, coal, pitch, tar, resin, sawdust, crude antimony and sulphur. They produced a "noisome smoke in abundance that is impossible to bear". In 19th-century British service, they were made of concentric paper with a thickness about 1/15th of the total diameter and filled with powder, saltpeter, pitch, coal and tallow. They were used to 'suffocate or expel the enemy in casemates, mines or between decks; for concealing operations; and as signals.

During the First World War, shrapnel shells and explosive shells inflicted terrible casualties on infantry, accounting for nearly 70% of all war casualties and leading to the adoption of steel combat helmets on both sides. Frequent problems with shells led to many military disasters with dud shells, most notably during the 1916 Battle of the Somme. Shells filled with poison gas were used from 1917 onwards.

Propulsion

Artillery shells are differentiated by how the shell is loaded and propelled, and the type of breech mechanism.

Fixed ammunition

Fixed ammunition has three main components: the fuzed projectile, the casing to hold the propellants and primer, and the single propellant charge. Everything is included in a ready-to-use package and in British ordnance terms is called fixed quick firing. Often guns which use fixed ammunition use sliding-block or sliding-wedge breeches and the case provides obturation which seals the breech of the gun and prevents propellant gasses from escaping. Sliding block breeches can be horizontal or vertical. Advantages of fixed ammunition are simplicity, safety, moisture resistance and speed of loading. Disadvantages are eventually a fixed round becomes too long or too heavy to load by a gun crew. Another issue is the inability to vary propellant charges to achieve different velocities and ranges. Lastly, there is the issue of resource usage since a fixed round uses a case, which can be an issue in a prolonged war if there are metal shortages.

Separate loading cased charge

Semi-fixed ammunition for the M119 howitzer, with the propellant cases and projectiles separated

Separate loading cased charge ammunition has three main components: the fuzed projectile, the casing to hold the propellants and primer, and the bagged propellant charges. The components are usually separated into two or more parts. In British ordnance terms, this type of ammunition is called separate quick firing. Often guns which use separate loading cased charge ammunition use sliding-block or sliding-wedge breeches and during World War I and World War II Germany predominantly used fixed or separate loading cased charges and sliding block breeches even for their largest guns. A variant of separate loading cased charge ammunition is semi-fixed ammunition. With semi-fixed ammunition the round comes as a complete package but the projectile and its case can be separated. The case holds a set number of bagged charges and the gun crew can add or subtract propellant to change range and velocity. The round is then reassembled, loaded, and fired. Advantages include easier handling for larger caliber rounds, while range and velocity can easily be varied by increasing or decreasing the number of propellant charges. Disadvantages include more complexity, slower loading, less safety, less moisture resistance, and the metal cases can still be a material resource issue.

Separate loading bagged charge

In separate loading bagged charge ammunition there are three main components: the fuzed projectile, the bagged charges and the primer. Like separate loading cased charge ammunition, the number of propellant charges can be varied. However, this style of ammunition does not use a cartridge case and it achieves obturation through a screw breech instead of a sliding block. Sometimes when reading about artillery the term separate loading ammunition will be used without clarification of whether a cartridge case is used or not, in which case it refers to the type of breech used. Heavy artillery pieces and naval artillery tend to use bagged charges and projectiles because the weight and size of the projectiles and propelling charges can be more than a gun crew can manage. Advantages include easier handling for large rounds, decreased metal usage, while range and velocity can be varied by using more or fewer propellant charges. Disadvantages include more complexity, slower loading, less safety and less moisture resistance.

Range-enhancing technologies

XM1113 extended-range artillery round, shown here at a range demonstration, uses a rocket-assist motor

Extended-range shells are sometimes used. These special shell designs may be rocket-assisted projectiles (RAP) or base bleed (BB) to increase range. The first has a small rocket motor built into its base to provide additional thrust. The second has a pyrotechnic device in its base that bleeds gas to fill the partial vacuum created behind the shell and hence reduce base-drag. These shell designs usually have reduced high-explosive filling to remain within the permitted mass for the projectile, and hence less lethality.

Sizes

See also: British standard ordnance weights and measurements and List of British ordnance terms
British gun crew preparing 155 mm shells at Vergato, Italy during the Liberation of Italy, 22 February 1945

The caliber of a shell is its diameter. Depending on the historical period and national preferences, this may be specified in millimeters, centimeters, or inches. The length of gun barrels for large cartridges and shells (naval) is frequently quoted in terms of the ratio of the barrel length to the bore size, also called caliber. For example, the 16"/50 caliber Mark 7 gun is 50 calibers long, that is, 16"×50=800"=66.7 feet long. Some guns, mainly British, were specified by the weight of their shells (see below).

Explosive rounds as small as 12.7 x 82 mm and 13 x 64 mm have been used on aircraft and armoured vehicles, but their small explosive yields have led some nations to limit their explosive rounds to 20mm (.78 in) or larger. International Law precludes the use of explosive ammunition for use against individual persons, but not against vehicles and aircraft. The largest shells ever fired during war were those from the German super-railway guns, Gustav and Dora, which were 800 mm (31.5 in) in caliber. Very large shells have been replaced by rockets, missiles, and bombs. Today the largest shells in common use are 155 mm (6.1 in).

American soldiers with 155 mm artillery shells, 10 March 1945

Gun calibers have standardized around a few common sizes, especially in the larger range, mainly due to the uniformity required for efficient military logistics. Shells of 105 and 155 mm for artillery with 105 and 120 mm for tank guns are common in NATO allied countries. Shells of 122, 130, and 152 mm for artillery with 100, 115, and 125 mm for tank guns, remain in common usage among the regions of Eastern Europe, Western Asia, Northern Africa, and Eastern Asia. Most common calibers have been in use for many decades, since it is logistically complex to change the caliber of all guns and ammunition stores.

The weight of shells increases by and large with caliber. A typical 155 mm (6.1 in) shell weighs about 50 kg (110 lbs), a common 203 mm (8 in) shell about 100 kg (220 lbs), a concrete demolition 203 mm (8 in) shell 146 kg (322 lbs), a 280 mm (11 in) battleship shell about 300 kg (661 lbs), and a 460 mm (18 in) battleship shell over 1,500 kg (3,307 lbs). The Schwerer Gustav large-calibre gun fired shells that weighed between 4,800 kg (10,582 lbs) and 7,100 kg (15,653 lbs).

During the 19th century, the British adopted a particular form of designating artillery. Field guns were designated by nominal standard projectile weight, while howitzers were designated by barrel caliber. British guns and their ammunition were designated in pounds, e.g., as "two-pounder" shortened to "2-pr" or "2-pdr". Usually, this referred to the actual weight of the standard projectile (shot, shrapnel, or high explosive), but, confusingly, this was not always the case.

Some were named after the weights of obsolete projectile types of the same caliber, or even obsolete types that were considered to have been functionally equivalent. Also, projectiles fired from the same gun, but of non-standard weight, took their name from the gun. Thus, conversion from "pounds" to an actual barrel diameter requires consulting a historical reference. A mixture of designations were in use for land artillery from the First World War (such as the BL 60-pounder gun, RML 2.5 inch Mountain Gun, 4 inch gun, 4.5 inch howitzer) through to the end of World War II (5.5 inch medium gun, 25-pounder gun-howitzer, 17-pounder tank gun), but the majority of naval guns were by caliber. After the end of World War II, field guns were designated by caliber.

Types

Palliser shot for the BL 12 inch naval gun Mk I - VII, 1886

There are many different types of shells. The principal ones include:

Armour-piercing shells

Main article: armour-piercing shell

With the introduction of the first ironclads in the 1850s and 1860s, it became clear that shells had to be designed to effectively pierce the ship armour. A series of British tests in 1863 demonstrated that the way forward lay with high-velocity lighter shells. The first pointed armour-piercing shell was introduced by Major Palliser in 1863. Approved in 1867, Palliser shot and shell was an improvement over the ordinary elongated shot of the time. Palliser shot was made of cast iron, the head being chilled in casting to harden it, using composite molds with a metal, water cooled portion for the head.

Britain also deployed Palliser shells in the 1870s–1880s. In the shell, the cavity was slightly larger than in the shot and was filled with 1.5% gunpowder instead of being empty, to provide a small explosive effect after penetrating armour plating. The shell was correspondingly slightly longer than the shot to compensate for the lighter cavity. The powder filling was ignited by the shock of impact and hence did not require a fuze. However, ship armour rapidly improved during the 1880s and 1890s, and it was realised that explosive shells with steel had advantages including better fragmentation and resistance to the stresses of firing. These were cast and forged steel.

AP shells containing an explosive filling were initially distinguished from their non-HE counterparts by being called a "shell" as opposed to "shot". By the time of the Second World War, AP shells with a bursting charge were sometimes distinguished by appending the suffix "HE". At the beginning of the war, APHE was common in anti-tank shells of 75 mm caliber and larger due to the similarity with the much larger naval armour piercing shells already in common use. As the war progressed, ordnance design evolved so that the bursting charges in APHE became ever smaller to non-existent, especially in smaller caliber shells, e.g. Panzergranate 39 with only 0.2% HE filling.

Types of armour-piercing ammunition

High-explosive shells

"High-explosive shell" redirects here. For the material, see high explosives.
Picric acid was used in the first high-explosive shells. Cut out section of a high-explosive shell belonging to a Canon de 75 modèle 1897.

Although smokeless powders were used as a propellant, they could not be used as the substance for the explosive warhead, because shock sensitivity sometimes caused detonation in the artillery barrel at the time of firing. Picric acid was the first high-explosive nitrated organic compound widely considered suitable to withstand the shock of firing in conventional artillery. In 1885, based on research of Hermann Sprengel, French chemist Eugène Turpin patented the use of pressed and cast picric acid in blasting charges and artillery shells. In 1887, the French government adopted a mixture of picric acid and guncotton under the name Melinite. In 1888, Britain started manufacturing a very similar mixture in Lydd, Kent, under the name Lyddite.

Japan followed with an "improved" formula known as shimose powder. In 1889, a similar material, a mixture of ammonium cresylate with trinitrocresol, or an ammonium salt of trinitrocresol, started to be manufactured under the name ecrasite in Austria-Hungary. By 1894, Russia was manufacturing artillery shells filled with picric acid. Ammonium picrate (known as Dunnite or explosive D) was used by the United States beginning in 1906. Germany began filling artillery shells with TNT in 1902. Toluene was less readily available than phenol, and TNT is less powerful than picric acid, but the improved safety of munitions manufacturing and storage caused the replacement of picric acid by TNT for most military purposes between the World Wars. However, pure TNT was expensive to produce and most nations made some use of mixtures using cruder TNT and ammonium nitrate, some with other compounds included. These fills included Ammonal, Schneiderite and Amatol. The latter was still in wide use in World War II.

The percentage of shell weight taken up by its explosive fill increased steadily throughout the 20th Century. Less than 10% was usual in the first few decades; by World War II, leading designs were around 15%. However, British researchers in that war identified 25% as being the optimal design for anti-personnel purposes, based on the recognition that far smaller fragments than hitherto would give a better effect. This guideline was achieved by the 1960s with the 155 mm L15 shell, developed as part of the German-British FH-70 program. The key requirement for increasing the HE content without increasing shell weight was to reduce the thickness of shell walls, which required improvements in high tensile steel.

15 inch high-explosive howitzer shells, circa 1917

The most common shell type is high explosive, commonly referred to simply as HE. They have a strong steel case, a bursting charge, and a fuse. The fuse detonates the bursting charge which shatters the case and scatters hot, sharp case pieces (fragments, splinters) at high velocity. Most of the damage to soft targets, such as unprotected personnel, is caused by shell pieces rather than by the blast. The term "shrapnel" is sometimes used to describe the shell pieces, but shrapnel shells functioned very differently and are long obsolete. The speed of fragments is limited by Gurney equations. Depending on the type of fuse used the HE shell can be set to burst on the ground (percussion), in the air above the ground, which is called air burst (time or proximity), or after penetrating a short distance into the ground (percussion with delay, either to transmit more ground shock to covered positions, or to reduce the spread of fragments). Projectiles with enhanced fragmentation are called high-explosive fragmentation (HE-FRAG).

RDX and TNT mixtures are the standard chemicals used, notably Composition B and Cyclotol. The introduction of "insensitive munition" requirements, agreements and regulations in the 1990s caused modern western designs to use various types of plastic bonded explosives (PBX) based on RDX.

Common

BL 9.2 in common shell Mk V

Common shells designated in the early (i.e. 1800s) British explosive shells were filled with "low explosives" such as "P mixture" (gunpowder) and usually with a fuze in the nose. Common shells on bursting (non-detonating) tended to break into relatively large fragments which continued along the shell's trajectory rather than laterally. They had some incendiary effect.

In the late 19th century "double common shells" were developed, lengthened so as to approach twice the standard shell weight, to carry more powder and hence increase explosive effect. They suffered from instability in flight and low velocity and were not widely used.

In 1914, common shells with a diameter of 6-inches and larger were of cast steel, while smaller diameter shells were of forged steel for service and cast iron for practice. They were replaced by "common lyddite" shells in the late 1890s but some stocks remained as late as 1914. In British service common shells were typically painted black with a red band behind the nose to indicate the shell was filled.

Common pointed

QF 12-pounder common pointed shell

Common pointed shells, or CP were a type of common shell used in naval service from the 1890s – 1910s which had a solid nose and a percussion fuze in the base rather than the common shell's nose fuze. The ogival two C.R.H. solid pointed nose was considered suitable for attacking shipping but was not armour-piercing – the main function was still explosive. They were of cast or forged (three- and six-pounder) steel and contained a gunpowder bursting charge slightly smaller than that of a common shell, a trade off for the longer heavier nose.

In British service common pointed shells were typically painted black, except 12-pounder shells specific for QF guns which were painted lead colour to distinguish them from 12-pounder shells usable with both BL and QF guns. A red ring behind the nose indicated the shell was filled.

By World War II they were superseded in Royal Navy service by common pointed capped (CPC) and semi-armour piercing (SAP), filled with TNT.

Common lyddite

Common lyddite six-inch naval shell

Common lyddite shells were British explosive shells filled with Lyddite were initially designated "common lyddite" and beginning in 1896 were the first British generation of modern "high explosive" shells. Lyddite is picric acid fused at 280 °F (138 °C) and allowed to solidify, producing a much denser dark-yellow form which is not affected by moisture and is easier to detonate than the liquid form. Its French equivalent was "melinite", Japanese equivalent was "shimose". Common lyddite shells "detonated" and fragmented into small pieces in all directions, with no incendiary effect. For maximum destructive effect the explosion needed to be delayed until the shell had penetrated its target.

Early shells had walls of the same thickness for the whole length, later shells had walls thicker at the base and thinning towards the nose. This was found to give greater strength and provide more space for explosive. Later shells had 4 c.r. heads, more pointed and hence streamlined than earlier 2 c.r.h. designs.

Proper detonation of a lyddite shell would show black to grey smoke, or white from the steam of a water detonation. Yellow smoke indicated simple explosion rather than detonation, and failure to reliably detonate was a problem with lyddite, especially in its earlier usage. To improve the detonation "exploders" with a small quantity of picric powder or even of TNT (in smaller shells, 3 pdr, 12 pdr – 4.7 inch) was loaded between the fuze and the main lyddite filling or in a thin tube running through most of the shell's length.

Lyddite presented a major safety problem because it reacted dangerously with metal bases. This required that the interior of shells had to be varnished, the exterior had to be painted with leadless paint and the fuze-hole had to be made of a leadless alloy. Fuzes containing any lead could not be used with it.

When World War I began Britain was replacing lyddite with modern "high explosive" (HE) such as TNT. After World War I the term "common lyddite" was dropped, and remaining stocks of lyddite-filled shells were referred to as HE (high explosive) shell filled lyddite. Hence "common" faded from use, replaced by "HE" as the explosive shell designation.

Common lyddite shells in British service were painted yellow, with a red ring behind the nose to indicate the shell had been filled.

Mine shell

Main article: Mine shell

The mine shell is a particular form of HE shell developed for use in small caliber weapons such as 20 mm to 30 mm cannon. Small HE shells of conventional design can contain only a limited amount of explosive. By using a thin-walled steel casing of high tensile strength, a larger explosive charge can be used. Most commonly the explosive charge also was a more expensive but higher-detonation-energy type.

The mine shell concept was invented by the Germans in the Second World War primarily for use in aircraft guns intended to be fired at opposing aircraft. Mine shells produced relatively little damage due to fragments, but a much more powerful blast. The aluminium structures and skins of Second World War aircraft were readily damaged by this greater level of blast.

Shrapnel shells

Main article: Shrapnel shell
Typical World War I shrapnel round:
1 shell bursting charge
2 bullets
3 nose fuze
4 central ignition tube
5 resin matrix
6 thin steel shell wall
7 cartridge case
8 propellant

Shrapnel shells are an anti-personnel munition which delivered large numbers of bullets at ranges far greater than rifles or machine guns could attain – up to 6,500 yards by 1914. A typical shrapnel shell as used in World War I was streamlined, 75 mm (3 in) in diameter and contained approximately 300 lead–antimony balls (bullets), each around 1/2-inch in diameter. Shrapnel used the principle that the bullets encountered much less air resistance if they travelled most of their journey packed together in a single streamlined shell than they would if they travelled individually, and could hence attain a far greater range.

The gunner set the shell's time fuze so that it was timed to burst as it was angling down towards the ground just before it reached its target (ideally about 150 yards before, and 60–100 feet above the ground). The fuze then ignited a small "bursting charge" in the base of the shell which fired the balls forward out of the front of the shell case, adding 200–250 ft/second to the existing velocity of 750–1200 ft/second. The shell body dropped to the ground mostly intact and the bullets continued in an expanding cone shape before striking the ground over an area approximately 250 yards × 30 yards in the case of the US 3-inch shell. The effect was of a large shotgun blast just in front of and above the target, and was deadly against troops in the open. A trained gun team could fire 20 such shells per minute, with a total of 6,000 balls, which compared very favorably with rifles and machine-guns.

However, shrapnel's relatively flat trajectory (it depended mainly on the shell's velocity for its lethality, and was lethal only in the forward direction) meant that it could not strike trained troops who avoided open spaces and instead used dead ground (dips), shelters, trenches, buildings, and trees for cover. It was of no use in destroying buildings or shelters. Hence, it was replaced during World War I by the high-explosive shell, which exploded its fragments in all directions (and thus more difficult to avoid) and could be fired by high-angle weapons, such as howitzers.

Cluster and sub-munition

Cluster shells are a type of carrier shell or cargo munition. Like cluster bombs, an artillery shell may be used to scatter smaller sub-munitions, including anti-personnel grenades, anti-tank top-attack munitions, and landmines. These are generally far more lethal against both armour and infantry than simple high-explosive shells, since the multiple munitions create a larger kill zone and increase the chance of achieving the direct hit necessary to kill armour. Many modern armies make significant use of cluster munitions in their artillery batteries.

Artillery-scattered mines allow for the quick deployment of minefields into the path of the enemy without placing engineering units at risk, but artillery delivery may lead to an irregular and unpredictable minefield with more unexploded ordnance than if mines were individually placed.

Signatories of the Convention on Cluster Munitions have accepted restrictions on the use of cluster munitions, including artillery shells: the treaty requires that a weapon so defined must contain nine or fewer submunitions, which must each weigh more than 4 kilograms, be capable of detecting and engaging a single target, and contain electronic self-destruct and self-deactivation systems. Submunitions which weigh 20 kg or more are not restricted.

Chemical

155 mm artillery shells containing HD (sulfur mustard) agent at Pueblo chemical weapons storage facility – Note the colour-coding scheme on each shell.

Chemical shells contain just a small explosive charge to burst the shell, and a larger quantity of a chemical agent or riot control agent of some kind, in either liquid, gas or powdered form. In some cases such as the M687 Sarin gas shell, the payload is stored as two precursor chemicals which are mixed after the shell is fired. Some examples designed to deliver powdered chemical agents, such as the M110 155mm Cartridge, were later repurposed as smoke/incendiary rounds containing powdered white phosphorus.

Chemical shells were most commonly employed during the First World War. Use of chemical agents of all kinds has been forbidden by numerous international treaties starting with the 1925 Geneva Protocol (not to be confused with the Geneva Convention), with the 1993 Chemical Weapons Convention being the most modern treaty which also outlaws production, stockpiling and transfer of such weapons. All signatories have renounced the use of both lethal chemical agents and incapacitating agents in warfare.

Nuclear artillery

Main article: Nuclear artillery

Nuclear artillery shells are used to provide battlefield scale nuclear weapons for tactical use. These range from the relatively small 155 mm shell to the 406 mm shell used by heavy battleship cannon and shore defense units equipped with the same guns.

Non-lethal shells

Not all shells are designed to kill or destroy. The following types are designed to achieve particular non-lethal effects. They are not completely harmless: smoke and illumination shells can accidentally start fires, and impact by the discarded carrier of all three types can wound or kill personnel, or cause minor damage to property.

Smoke

Smoke shells are used to create smoke screens to mask movements of friendly forces or disorient enemies, or to mark specific areas. The main types are bursting (using a payload powdered chemicals) and base ejection (delivering three or four smoke canisters which are deployed from the rear of the shell prior to impact, or a single canister containing submunitions distributed via a bursting charge). Base ejection shells are a type of carrier shell or cargo munition.

Base ejection smoke is usually white, however, colored smoke has been used for marking purposes. The original canisters typically used hexachloroethane-zinc (HC), modern ones use red phosphorus because of its multi-spectral properties. However, other compounds have been used; in World War II, Germany used oleum (fuming sulfuric acid) and pumice.

Due to the nature of their payload, powder smoke shells using white phosphorus in particular have a secondary effect as incendiary weapons, though they are not as effective in this role as dedicated weapons using thermite.

Illumination

British World War II 4-inch naval illuminating shell, showing time fuze (orange, top), illuminating compound (green) and parachute (white, bottom)

Modern illuminating shells are a type of carrier shell or cargo munition. Those used in World War I were shrapnel pattern shells ejecting small burning "pots".

A modern illumination shell has a time fuze that ejects a flare "package" through the base of the carrier shell at a standard height above ground (typically about 600 metres), from where it slowly falls beneath a non-flammable parachute, illuminating the area below. The ejection process also initiates a pyrotechnic flare emitting white or "black" infrared light.

Illumination rounds fired from a M777 howitzer

Typically illumination flares burn for about 60 seconds. These are also known as starshell or star shell. Infrared illumination is a more recent development used to enhance the performance of night-vision devices. Both white- and black-light illuminating shells may be used to provide continuous illumination over an area for a period of time and may use several dispersed aimpoints to illuminate a large area. Alternatively, firing single illuminating shells may be coordinated with the adjustment of HE shell fire onto a target.

Colored flare shells have also been used for target marking and other signaling purposes.

Carrier

The carrier shell is simply a hollow carrier equipped with a fuze that ejects the contents at a calculated time. They are often filled with leaflets (see external links), but can be filled with anything that meets the weight restrictions and is able to withstand the shock of firing. Famously, on Christmas Day 1899 during the siege of Ladysmith, the Boers fired into Ladysmith a carrier shell without a fuze, which contained a Christmas pudding, two Union Flags and the message "compliments of the season". The shell is still kept in the museum at Ladysmith.

Proof shot

Main article: Proof test

A proof shot is not used in combat but to confirm that a new gun barrel can withstand operational stresses. The proof shot is heavier than a normal shot or shell, and an oversize propelling charge is used, subjecting the barrel to greater than normal stress. The proof shot is inert (no explosive or functioning filling) and is often a solid unit, although water, sand or iron powder filled versions may be used for testing the gun mounting. Although the proof shot resembles a functioning shell (of whatever sort), so that it behaves as a real shell in the barrel, it is not aerodynamic as its job is over once it has left the muzzle of the gun. Consequently, it travels a much shorter distance and is usually stopped by an earth bank for safety measures.

The gun, operated remotely for safety in case it fails, fires the proof shot, and is then inspected for damage. If the barrel passes the examination, "proof marks" are added to the barrel. The gun can be expected to handle normal ammunition, which subjects it to less stress than the proof shot, without being damaged.

Guided shells

Main articles: Cannon-launched guided projectile and Precision-guided munition

Guided or "smart" ammunition features some method of guiding itself post-launch, usually through the addition of steering fins that alter its trajectory in an unpowered glide. Due to their much higher cost, they have yet to supplant unguided munitions in all applications.

Unexploded shells

Main article: Unexploded ordnance
This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (September 2023) (Learn how and when to remove this message)

The fuze of a shell has to keep the shell safe from accidental functioning during storage, due to (possibly) rough handling, fire, etc. It also has to survive the violent launch through the barrel, then reliably function at the appropriate moment. To do this it has a number of arming mechanisms which are successively enabled under the influence of the firing sequence.

Corroded but live Iraqi artillery shell dating from the Gulf War (1990–1991)

Sometimes, one or more of these arming mechanisms fail, resulting in a projectile that is unable to detonate. More worrying (and potentially far more hazardous) are fully armed shells on which the fuze fails to initiate the HE firing. This may be due to a shallow trajectory of fire, low-velocity firing or soft impact conditions. Whatever the reason for failure, such a shell is called a blind or unexploded ordnance (UXO) (the older term, "dud", is discouraged because it implies that the shell cannot detonate.) Blind shells often litter old battlefields; depending on the impact velocity, they may be buried some distance into the earth, all the while remaining potentially hazardous. For example, antitank ammunition with a piezoelectric fuze can be detonated by relatively light impact to the piezoelectric element, and others, depending on the type of fuze used, can be detonated by even a small movement. The battlefields of the First World War still claim casualties today from leftover munitions. Modern electrical and mechanical fuzes are highly reliable: if they do not arm correctly, they keep the initiation train out of line or (if electrical in nature) discharge any stored electrical energy.

References

  1. "Etymology of grenade". Etymonline.com. 8 January 1972. Retrieved 27 February 2013.
  2. ^ Needham, Joseph. (1986). Science and Civilization in China: Volume 5, Chemistry and Chemical Technology, Part 7, Military Technology; the Gunpowder Epic. Taipei: Caves Books Ltd. Pages 24–25, 264.
  3. Delgado, James (February 2003). "Relics of the Kamikaze". Archaeology. 56 (1). Archaeological Institute of America. Archived from the original on 29 December 2013.
  4. Hogg, p. 164.
  5. Franzkowiak, Andreas; Wenzel, Chris (2018). "Keramikgranaten aus Ingolstadt - Ein außergewöhnlicher Fund". Waffen- und Kostümkunde - Zeitschrift für Waffen- und Kleidungsgeschichte (in German). 60 (1): 65–80. ISSN 0042-9945.
  6. Hogg, pp. 164–165.
  7. Hogg, p. 165.
  8. Bastable, Marshall J. (1992). "From Breechloaders to Monster Guns: Sir William Armstrong and the Invention of Modern Artillery, 1854–1880". Technology and Culture. 33 (2): 213–247. doi:10.2307/3105857. JSTOR 3105857. S2CID 112105821.
  9. "William George Armstrong - Graces Guide". www.gracesguide.co.uk.
  10. "The Emergence of Modern War". Archived from the original on 19 August 1999.
  11. Hogg, pp. 80–83.
  12. ^ Hogg, pp. 165–166.
  13. Hogg, pp. 203–203.
  14. Davis, William C., Jr. Handloading. National Rifle Association of America (1981). p. 28.
  15. ^ Sharpe, Philip B. Complete Guide to Handloading. 3rd edition (1953). Funk & Wagnalls. pp. 141–144.
  16. Davis, Tenney L. The Chemistry of Powder & Explosives (1943), pages 289–292.
  17. Hogg, Oliver F. G. Artillery: Its Origin, Heyday and Decline (1969), p. 139.
  18. Hogg, Oliver F. G. Artillery: Its Origin, Heyday and Decline (1969), p. 141.
  19. Nicolas Édouard Delabarre-Duparcq and George Washington Cullum. Elements of Military Art and History. 1863. p. 142.
  20. Philip Jobson (2 September 2016). Royal Artillery Glossary of Terms and Abbreviations: Historical and Modern. History Press. ISBN 978-0-7509-8007-4.
  21. Hogg, pp. 171–174.
  22. ^ Hogg, pp. 174–176.
  23. ^ Hogg, Ian; Batchelor, John H. (1972). Artillery. New York: Scribner. ISBN 0684130920. OCLC 571972.
  24. "Build a Free Website with Web Hosting – Tripod". members.lycos.co.uk. Archived from the original on 20 March 2008. Retrieved 15 June 2014.
  25. "Treatise on Ammunition", 4th Edition 1887, pp. 203–205.
  26. ^ Brown, G. I. (1998) The Big Bang: a History of Explosives. Sutton Publishing. ISBN 0-7509-1878-0. pp. 151–163.
  27. Marc Ferro. The Great War. London and New York: Routeladge Classics, p. 98.
  28. Marc Garlasco; Fred Abrahams; Bill van Esveld; Fares Akram; Darryl Li (2009). Joe Stock; James Ross; Iain Levine (eds.). Rain of Fire: Israel's Unlawful Use of White Phosphorus in Gaza. Human Rights Watch. p. 3. ISBN 978-1-56432-458-0.
  29. "Ordnance & Munitions Forecast". www.forecastinternational.com. 2010.
  30. Treatise on Ammunition (1915), pp. 158, 159, 198. sfnp error: no target: CITEREFTreatise_on_Ammunition1915 (help)
  31. Treatise on Ammunition (1915), p. 161. sfnp error: no target: CITEREFTreatise_on_Ammunition1915 (help)
  32. Treatise on Ammunition (1915), pp. 37, 158, 159, 198. sfnp error: no target: CITEREFTreatise_on_Ammunition1915 (help)
  33. I.V. Hogg & L.F. Thurston, British Artillery Weapons & Ammunition. London: Ian Allan, 1972. Page 215.
  34. Hamilton 1915, p. 13.

Sources

External links

Categories:
Shell (projectile): Difference between revisions Add topic