Misplaced Pages

Zinc iodide: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 01:40, 10 October 2011 editCitation bot 1 (talk | contribs)Bots130,044 editsm Add: issue. You can use this bot yourself. Report bugs here.← Previous edit Latest revision as of 14:21, 3 January 2025 edit undoBernanke's Crossbow (talk | contribs)Extended confirmed users7,929 edits Preparation: neat 
(62 intermediate revisions by 39 users not shown)
Line 1: Line 1:
{{chembox {{chembox
| Verifiedfields = changed
| verifiedrevid = 405520902
| Watchedfields = changed
| verifiedrevid = 477000081
| IUPACName = Zinc iodide | IUPACName = Zinc iodide
| OtherNames = Zinc(II) iodide | OtherNames = Zinc(II) iodide
| ImageFile = ZnI2structure.jpg | ImageFile = Portion of ZnI2 lattice (ICD Code2404).png
| Section1 = {{Chembox Identifiers |Section1={{Chembox Identifiers
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} | ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 59657 | ChemSpiderID = 59657
| InChI = 1/2HI.Zn/h2*1H;/q;;+2/p-2 | InChI = 1/2HI.Zn/h2*1H;/q;;+2/p-2
Line 15: Line 17:
| StdInChIKey = UAYWVJHJZHQCIE-UHFFFAOYSA-L | StdInChIKey = UAYWVJHJZHQCIE-UHFFFAOYSA-L
| CASNo = 10139-47-6 | CASNo = 10139-47-6
| CASNo_Ref = {{cascite|correct|CAS}} | CASNo_Ref = {{cascite|correct|CAS}}

| PubChem = 66278
| UNII_Ref = {{fdacite|changed|FDA}}
| RTECS =
| UNII = 762R7A0O0B

| PubChem = 66278
| RTECS =
}} }}
| Section2 = {{Chembox Properties |Section2={{Chembox Properties
| Formula = ZnI<sub>2</sub> | Formula = ZnI<sub>2</sub>
| MolarMass = 319.22 g/mol | MolarMass = 319.19 g/mol
| Appearance = white solid | Appearance = white solid
| Density = 4.74 g/cm<sup>3</sup> | Density = 4.74 g/cm<sup>3</sup>
| Solubility = 450 g/100mL (20 °C) | Solubility = 450 g/100mL (20 °C)
| SolubleOther = | SolubleOther =
| Solvent = | Solvent =
| MeltingPt = 446 °C | MeltingPtC = 446
| BoilingPt = 1150 ºC decomp. | BoilingPtC = 1150
| BoilingPt_notes = decomposes
| MagSus = &minus;98.0·10<sup>−6</sup> cm<sup>3</sup>/mol
}} }}
| Section3 = {{Chembox Structure |Section3={{Chembox Structure
| CrystalStruct = Tetragonal, ] | CrystalStruct = Tetragonal, ]
| SpaceGroup = I4<sub>1</sub>/acd, No. 142 | SpaceGroup = I4<sub>1</sub>/acd, No. 142
}} }}
| Section7 = {{Chembox Hazards |Section7={{Chembox Hazards
| ExternalMSDS = | ExternalSDS =
| EUIndex = Not listed | HPhrases =
| EUClass = | PPhrases =
| RPhrases = | GHS_ref =
| SPhrases = | NFPA-H =
| NFPA-H = | NFPA-F =
| NFPA-F = | NFPA-R =
| NFPA-R = | NFPA-S =
| NFPA-O = | FlashPtC = 625
| FlashPt = 625 °C
}}
| Section8 = {{Chembox Related
| OtherAnions = ]<br/>]<br/>]
| OtherCations = ]<br/>]
| OtherCpds =
}} }}
|Section8={{Chembox Related
| OtherAnions = ]<br/>]<br/>]
| OtherCations = ]<br/>]
| OtherCompounds =
}}
}} }}
'''Zinc iodide''' is a chemical compound of ] and ], ZnI<sub>2</sub>. The anhydrous form is white and readily absorbs water from the atmosphere. It can be prepared by the direct reaction of zinc and iodine in refluxing ].<ref>Mary Eagleson, 1994, '''Zinc iodide''' is the ] with the formula ZnI<sub>2</sub>. It exists both in anhydrous form and as a dihydrate. Both are white and readily absorb water from the atmosphere. It has no major application.
Concise encyclopedia chemistry, Walter de Gruyter, ISBN 3110114518</ref> or by reacting zinc with iodine in aqueous solution:<ref>
Synthesis and Decomposition of Zinc Iodide: Model Reactions for Investigating Chemical Change in the Introductory Laboratory, DeMeo, Stephen., J. Chem. Educ., (1995), 72, 836</ref>
: Zn + I<sub>2</sub>→ ZnI<sub>2</sub>
At 1150 °C, zinc iodide vapour dissociates into zinc and iodine.{{Fact|date=January 2009}}<br />
In aqueous solution the following have been detected, octahedral Zn(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup>, <sup>+</sup> and tetrahedral ZnI<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>, ZnI<sub>3</sub>(H<sub>2</sub>O)<sup>−</sup> and ZnI<sub>4</sub><sup>2−</sup>.<ref>{{cite journal|doi=10.1007/BF00650714|title=Structure determination of zinc iodide complexes formed in aqueous solution|year=1991|author=Wakita, Hisanobu; Johansson, Georg; Sandström, Magnus; Goggin, Peter L.; Ohtaki, Hitoshi|journal=Journal of Solution Chemistry|volume=20|pages=643|issue=7}}</ref>


==Preparation==
The structure of crystalline ZnI<sub>2</sub> is unusual, and while zinc atoms are tetrahedrally coordinated, as in ], groups of four of these tetrahedra share three vertices to form “super-tetrahedra” of composition {Zn<sub>4</sub>I<sub>10</sub>}, which are linked by their vertices to form a three dimensional structure.<ref name = "Wells"> Wells A.F. (1984) ''Structural Inorganic Chemistry'' 5th edition Oxford Science Publications ISBN 0-19-855370-6 </ref> These "super-tetrahedra" are similar to the ] structure.<ref name = "Wells"/>
It can be prepared by the direct reaction of zinc and iodine in water<ref name=Brauer>{{cite book|author1=F. Wagenknecht|author2=R. Juza|chapter=Zinc iodide|title=Handbook of Preparative Inorganic Chemistry, 2nd Ed. |editor=G. Brauer|publisher=Academic Press|year=1963|place=NY, NY|volume=1|pages=1073}}</ref><ref>{{cite journal | author = DeMeo, S. | title = Synthesis and Decomposition of Zinc Iodide: Model Reactions for Investigating Chemical Change in the Introductory Laboratory | journal = Journal of Chemical Education | year = 1995 | volume = 72 | issue = 9 | pages = 836 | doi = 10.1021/ed072p836 | bibcode = 1995JChEd..72..836D |url = https://pubs.acs.org/doi/abs/10.1021/ed072p836}}</ref> or refluxing ]:<ref>{{cite book | author = Eagleson, M. | year = 1994 | title = Concise Encyclopedia Chemistry | url = https://archive.org/details/conciseencyclope00eagl | url-access = registration | publisher = Walter de Gruyter | isbn = 3-11-011451-8 }}</ref>
Molecular ZnI<sub>2</sub> is linear as predicted by ] theory with a Zn-I bond length of 238 pm.<ref name = "Wells"/>
: Zn + I<sub>2</sub> ZnI<sub>2</sub>
Absent a solvent, the elements do not combine directly at room temperature.<ref>{{cite video|first1=George|last1=Gilbert|first2=Kelly|last2=Houston|first3=Jerrold&nbsp;J.|last3=Jacobsen|first4=David|last4=Phillips|orig-date=6 Mar 2012|year=2022|title=Zinc iodine reaction|url=https://www.chemedx.org/video/zinc-iodine-reaction|type=web video|publisher=American Chemical Society, Division of Chemical Education|via=ChemEdX}}</ref>

==Structure as solid, gas, and in solution==
The structure of solid ZnI<sub>2</sub> is unusual relative to the dichloride. While zinc centers are tetrahedrally coordinated, as in ], groups of four of these tetrahedra share three vertices to form “super-tetrahedra” of composition {Zn<sub>4</sub>I<sub>10</sub>}, which are linked by their vertices to form a three-dimensional structure.<ref name="Wells">{{cite book | author = Wells, A. F. | year = 1984 | title = Structural Inorganic Chemistry | edition = 5th | publisher = Oxford Science Publications | isbn = 0-19-855370-6 }}</ref> These "super-tetrahedra" are similar to the ] structure.<ref name="Wells"/><ref>{{cite journal |doi=10.1107/S0567740878010390|title=Structure Cristalline de l'Iodure de Zinc ZnI<sub>2</sub>|year=1978|last1=Fourcroy|first1=P. H.|last2=Carré|first2=D.|last3=Rivet|first3=J.|journal=Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry|volume=34|issue=11|pages=3160–3162|bibcode=1978AcCrB..34.3160F }}</ref>

Molecular ZnI<sub>2</sub> is linear as predicted by ] theory with a Zn-I bond length of 238 pm.<ref name="Wells"/>

In aqueous solution the following have been detected: Zn(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup>, <sup>+</sup>, tetrahedral ZnI<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>, ZnI<sub>3</sub>(H<sub>2</sub>O)<sup>−</sup>, and ZnI<sub>4</sub><sup>2−</sup>.<ref>{{cite journal |author1=Wakita, H. |author2=Johansson, G. |author3=Sandström, M. |author4=Goggin, P. L. |author5=Ohtaki, H. | title = Structure determination of zinc iodide complexes formed in aqueous solution | journal = Journal of Solution Chemistry | year = 1991 | volume = 20 | issue = 7 | pages = 643–668 | doi = 10.1007/BF00650714 |s2cid=97496242 }}</ref>


== Applications == == Applications ==
*Zinc iodide is often used as an ] ] penetrant in industrial ] to improve the contrast between the damage and intact composite.<ref>''Composite Materials for Aircraft Structures'' by Alan Baker, Stuart Dutton (Ed.), AIAA (American Institute of Aeronautics & Ast) ISBN 1-56347-540-5</ref><ref>''Plastics Failure Guide'' by Myer Ezrin, Hanser Gardner Publications. ISBN 1-56990-184-8</ref> *Zinc iodide is often used as an ] ] penetrant in ] to improve the contrast between the damage and intact composite.<ref>{{cite book |editor1=Baker, A. |editor2=Dutton, S. |editor3=Kelly, D. | title = Composite Materials for Aircraft Structures | edition = 2nd | year = 2004 | publisher = AIAA (American Institute of Aeronautics & Astronautics) | isbn = 1-56347-540-5 }}</ref><ref>{{cite book | title = Plastics Failure Guide | author = Ezrin, M. | publisher = Hanser Gardner Publications | year = 1996 | isbn = 1-56990-184-8 | url = https://books.google.com/books?id=baWyaC3w3hcC }}</ref>
*United States ] 4109065 <ref>United States Patent 4109065, ''Rechargeable aqueous zinc-halogen cell'', 1978</ref> describes a rechargeable aqueous zinc-halogen ] which includes an aqueous electrolytic solution containing a zinc salt selected from the class consisting of ], zinc iodide, and mixtures thereof, in both positive and negative ] compartments. *United States ] 4,109,065 <ref>{{cite patent | country = US | status = patent | number = 4109065 | title = Rechargeable aqueous zinc-halogen cell | gdate = 1978-08-22 | inventor = Will, F. G.; Secor, F. W. | assign1 = General Electric }}</ref> describes a rechargeable aqueous zinc-halogen ] that includes an aqueous electrolytic solution containing a zinc salt selected from the class consisting of ], zinc iodide, and mixtures thereof, in both positive and negative ] compartments.
*In conjunction with ] ZnI<sub>2</sub> is used as a stain in electron microscopy. <ref>M. A. Hayat, Principles and Techniques of Electron Microscopy: Biological Applications, 2000, 4th edition, Cambridge University Press, ISBN 0521632870</ref> *In combination with ], ZnI<sub>2</sub> is used as a stain in electron microscopy.<ref>{{cite book | author = Hayat, M. A. | title = Principles and Techniques of Electron Microscopy: Biological Applications | year = 2000 | edition = 4th | publisher = Cambridge University Press | isbn = 0-521-63287-0 }}</ref>
*As a Lewis acid, zinc iodide catalyzes for the conversion of ] to ] and ].<ref>{{Cite journal|last1=Bercaw|first1=John E.|last2=Diaconescu|first2=Paula L.|author-link2=Paula Diaconescu|last3=Grubbs|first3=Robert H.|last4=Kay|first4=Richard D.|last5=Kitching|first5=Sarah|last6= Labinger|first6=Jay A.|last7=Li|first7=Xingwei|last8=Mehrkhodavandi|first8=Parisa|last9=Morris|first9=George E.|date=2006-11-01|title=On the Mechanism of the Conversion of Methanol to 2,2,3-Trimethylbutane (Triptane) over Zinc Iodide|journal=The Journal of Organic Chemistry|volume=71|issue=23|pages=8907–8917|doi=10.1021/jo0617823|pmid=17081022|issn=0022-3263|url=https://resolver.caltech.edu/CaltechAUTHORS:20170427-090114775 }}</ref>
* It can be used as a topical antiseptic.<ref>{{citation |last1=Rohe |first1=Dieter M. M. |last2=Wolf |first2=Hans Uwe |contribution=Zinc Compounds |title=Ullmann's Encyclopedia of Industrial Chemistry |edition=7th |publisher=Wiley |year=2007 |pages=1–6 |doi=10.1002/14356007.a28_537|title-link=Ullmann's Encyclopedia of Industrial Chemistry |isbn=978-3527306732}}</ref>


==References== ==References==
Line 71: Line 84:


{{Zinc compounds}} {{Zinc compounds}}
{{Iodides}}


] ]
] ]
] ]


{{inorganic-compound-stub}}

]
]
]
]
]
]
]
]
]
]

Latest revision as of 14:21, 3 January 2025

Zinc iodide
Names
IUPAC name Zinc iodide
Other names Zinc(II) iodide
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.030.347 Edit this at Wikidata
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/2HI.Zn/h2*1H;/q;;+2/p-2Key: UAYWVJHJZHQCIE-UHFFFAOYSA-L
  • InChI=1/2HI.Zn/h2*1H;/q;;+2/p-2Key: UAYWVJHJZHQCIE-NUQVWONBAB
SMILES
  • II
Properties
Chemical formula ZnI2
Molar mass 319.19 g/mol
Appearance white solid
Density 4.74 g/cm
Melting point 446 °C (835 °F; 719 K)
Boiling point 1,150 °C (2,100 °F; 1,420 K) decomposes
Solubility in water 450 g/100mL (20 °C)
Magnetic susceptibility (χ) −98.0·10 cm/mol
Structure
Crystal structure Tetragonal, tI96
Space group I41/acd, No. 142
Hazards
Flash point 625 °C (1,157 °F; 898 K)
Safety data sheet (SDS) External MSDS
Related compounds
Other anions Zinc fluoride
Zinc chloride
Zinc bromide
Other cations Cadmium iodide
Mercury(I) iodide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Zinc iodide is the inorganic compound with the formula ZnI2. It exists both in anhydrous form and as a dihydrate. Both are white and readily absorb water from the atmosphere. It has no major application.

Preparation

It can be prepared by the direct reaction of zinc and iodine in water or refluxing ether:

Zn + I2 → ZnI2

Absent a solvent, the elements do not combine directly at room temperature.

Structure as solid, gas, and in solution

The structure of solid ZnI2 is unusual relative to the dichloride. While zinc centers are tetrahedrally coordinated, as in ZnCl2, groups of four of these tetrahedra share three vertices to form “super-tetrahedra” of composition {Zn4I10}, which are linked by their vertices to form a three-dimensional structure. These "super-tetrahedra" are similar to the P4O10 structure.

Molecular ZnI2 is linear as predicted by VSEPR theory with a Zn-I bond length of 238 pm.

In aqueous solution the following have been detected: Zn(H2O)6, , tetrahedral ZnI2(H2O)2, ZnI3(H2O), and ZnI4.

Applications

  • Zinc iodide is often used as an x-ray opaque penetrant in industrial radiography to improve the contrast between the damage and intact composite.
  • United States patent 4,109,065 describes a rechargeable aqueous zinc-halogen cell that includes an aqueous electrolytic solution containing a zinc salt selected from the class consisting of zinc bromide, zinc iodide, and mixtures thereof, in both positive and negative electrode compartments.
  • In combination with osmium tetroxide, ZnI2 is used as a stain in electron microscopy.
  • As a Lewis acid, zinc iodide catalyzes for the conversion of methanol to triptane and hexamethylbenzene.
  • It can be used as a topical antiseptic.

References

  1. F. Wagenknecht; R. Juza (1963). "Zinc iodide". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 1. NY, NY: Academic Press. p. 1073.
  2. DeMeo, S. (1995). "Synthesis and Decomposition of Zinc Iodide: Model Reactions for Investigating Chemical Change in the Introductory Laboratory". Journal of Chemical Education. 72 (9): 836. Bibcode:1995JChEd..72..836D. doi:10.1021/ed072p836.
  3. Eagleson, M. (1994). Concise Encyclopedia Chemistry. Walter de Gruyter. ISBN 3-11-011451-8.
  4. Gilbert, George; Houston, Kelly; Jacobsen, Jerrold J.; Phillips, David (2022) . Zinc iodine reaction (web video). American Chemical Society, Division of Chemical Education – via ChemEdX.
  5. ^ Wells, A. F. (1984). Structural Inorganic Chemistry (5th ed.). Oxford Science Publications. ISBN 0-19-855370-6.
  6. Fourcroy, P. H.; Carré, D.; Rivet, J. (1978). "Structure Cristalline de l'Iodure de Zinc ZnI2". Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 34 (11): 3160–3162. Bibcode:1978AcCrB..34.3160F. doi:10.1107/S0567740878010390.
  7. Wakita, H.; Johansson, G.; Sandström, M.; Goggin, P. L.; Ohtaki, H. (1991). "Structure determination of zinc iodide complexes formed in aqueous solution". Journal of Solution Chemistry. 20 (7): 643–668. doi:10.1007/BF00650714. S2CID 97496242.
  8. Baker, A.; Dutton, S.; Kelly, D., eds. (2004). Composite Materials for Aircraft Structures (2nd ed.). AIAA (American Institute of Aeronautics & Astronautics). ISBN 1-56347-540-5.
  9. Ezrin, M. (1996). Plastics Failure Guide. Hanser Gardner Publications. ISBN 1-56990-184-8.
  10. US patent 4109065, Will, F. G.; Secor, F. W., "Rechargeable aqueous zinc-halogen cell", issued 1978-08-22, assigned to General Electric 
  11. Hayat, M. A. (2000). Principles and Techniques of Electron Microscopy: Biological Applications (4th ed.). Cambridge University Press. ISBN 0-521-63287-0.
  12. Bercaw, John E.; Diaconescu, Paula L.; Grubbs, Robert H.; Kay, Richard D.; Kitching, Sarah; Labinger, Jay A.; Li, Xingwei; Mehrkhodavandi, Parisa; Morris, George E. (2006-11-01). "On the Mechanism of the Conversion of Methanol to 2,2,3-Trimethylbutane (Triptane) over Zinc Iodide". The Journal of Organic Chemistry. 71 (23): 8907–8917. doi:10.1021/jo0617823. ISSN 0022-3263. PMID 17081022.
  13. Rohe, Dieter M. M.; Wolf, Hans Uwe (2007), "Zinc Compounds", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–6, doi:10.1002/14356007.a28_537, ISBN 978-3527306732
Zinc compounds
Zinc(I)
Organozinc(I) compounds
Zinc(II)
Organozinc(II) compounds
  • Zn(CH3)2
  • Zn(C2H5)2
  • Zn(CH3COO)2
  • Zn(CH(CH3)2)2
  • Zn(C(CH3)3)2
  • Zn(C6H5)2
  • Zn(C3H5O3)2
  • ZnICH2I
  • Salts and covalent derivatives of the iodide ion
    HI
    +H
    He
    LiI BeI2 BI3
    +BO3
    CI4
    +C
    NI3
    NH4I
    +N
    I2O4
    I2O5
    I2O6
    I4O9
    IF
    IF3
    IF5
    IF7
    Ne
    NaI MgI2 AlI
    AlI3
    SiI4 PI3
    P2I4
    +P
    PI5
    S2I2 ICl
    ICl3
    Ar
    KI CaI2 ScI3 TiI2
    TiI3
    TiI4
    VI2
    VI3
    CrI2
    CrI3
    CrI4
    MnI2 FeI2
    FeI3
    CoI2 NiI2
    -Ni
    CuI ZnI2 GaI
    GaI3
    GeI2
    GeI4
    +Ge
    AsI3
    As2I4
    +As
    Se IBr
    IBr3
    Kr
    RbI
    RbI3
    SrI2 YI3 ZrI2
    ZrI3
    ZrI4
    NbI4
    NbI5
    MoI2
    MoI3
    TcI3 RuI3 RhI3 PdI2 AgI CdI2 InI
    InI3
    SnI2
    SnI4
    SbI3
    +Sb
    TeI4
    +Te
    I
    I
    3
    Xe
    CsI
    CsI3
    BaI2   LuI3 HfI3
    HfI4
    TaI4
    TaI5
    WI2
    WI3
    WI4
    ReI3
    ReI
    4
    OsI
    OsI2
    OsI3
    IrI3
    IrI
    4
    PtI2
    PtI4
    AuI
    AuI3
    Hg2I2
    HgI2
    TlI
    TlI3
    PbI2 BiI3 PoI2
    PoI4
    AtI Rn
    Fr RaI2   Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
    LaI2
    LaI3
    CeI2
    CeI3
    PrI2
    PrI3
    NdI2
    NdI3
    PmI3 SmI2
    SmI3
    EuI2
    EuI3
    GdI2
    GdI3
    TbI3 DyI2
    DyI
    3
    HoI3 ErI3 TmI2
    TmI3
    YbI2
    YbI3
    AcI3 ThI2
    ThI3
    ThI4
    PaI4
    PaI5
    UI3
    UI4
    NpI3 PuI3 AmI2
    AmI3
    CmI3 BkI
    3
    CfI
    2

    CfI
    3
    EsI2
    EsI3
    Fm Md No
    Categories:
    Zinc iodide: Difference between revisions Add topic