Misplaced Pages

Tin(II) fluoride: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 19:14, 13 October 2011 edit207.118.29.95 (talk) Removed blatant advertisement.← Previous edit Latest revision as of 03:58, 9 November 2024 edit undoSmokefoot (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers, Rollbackers75,107 edits Oral health benefits: hydroxyapatite per talk 
(137 intermediate revisions by 84 users not shown)
Line 1: Line 1:
{{Use British English|date=June 2019}}
{{chembox {{chembox
| Verifiedfields = changed
| verifiedrevid = 413761538
| Watchedfields = changed
| verifiedrevid = 441026513
| IUPACName = Tin(II) fluoride | IUPACName = Tin(II) fluoride
| ImageCaption = {{Color box|#C0C0C0|border=darkgray}} Sn<sup>2+</sup>; {{Color box|#99CC00|border=darkgray}} F<sup>−</sup>
| OtherNames = Stannous fluoride
| OtherNames = Stannous fluoride
| ImageFile = Kristallstruktur Zinn(II)-fluorid.png | ImageFile = Kristallstruktur Zinn(II)-fluorid.png
| Section1 = {{Chembox Identifiers |Section1={{Chembox Identifiers
| CASNo = 7783-47-3 | CASNo = 7783-47-3
| CASNo_Ref = {{cascite|??|??}} | CASNo_Ref = {{cascite|correct|CAS}}
| UNII_Ref = {{fdacite|correct|FDA}}
| RTECS = XQ3450000
| UNII = 3FTR44B32Q
| UNNumber = 3288
| RTECS = XQ3450000
| UNNumber = 3288
| PubChem = 24550
| InChI = 1S/2FH.Sn/h2*1H;/q;;+2/p-2
| SMILES = FF
}} }}
| Section2 = {{Chembox Properties |Section2={{Chembox Properties
| Formula = SnF<sub>2</sub> | Formula = SnF<sub>2</sub>
| MolarMass = 156.69 g/mol | MolarMass = 156.69 g/mol
| Appearance = colorless solid | Appearance = colorless solid
| Density = 4.57 g/cm<sup>3</sup> | Density = 4.57 g/cm<sup>3</sup>
| Solubility = ca. 350 g/L (20 °C) | Solubility = 31 g/100 mL (0 °C); <br />35 g/100 mL (20 °C); <br />78.5 g/100 mL (106 °C)
| SolubleOther = soluble in ], ]; <br />negligible in ], ], ]
| MeltingPt = 215 °C
| BoilingPt = 850 °C | MeltingPtC = 213
| BoilingPtC = 850
}} }}
| Section3 = {{Chembox Structure |Section3={{Chembox Structure
| CrystalStruct = ], ] | CrystalStruct = ], ]
| SpaceGroup = C2/c, No. 15 | SpaceGroup = C2/c, No. 15
}} }}
| Section7 = {{Chembox Hazards |Section7={{Chembox Hazards
| ExternalMSDS = | ExternalSDS =
| HPhrases =
| EUIndex = Not listed
| EUClass = | PPhrases =
| RPhrases = | GHS_ref =
| SPhrases = | NFPA-H = 2
| NFPA-H = 1 | NFPA-F = 0
| NFPA-F = 0 | NFPA-R = 0
| NFPA-R = 0 | NFPA-S =
| FlashPt = Non-flammable
| NFPA-O =
}}
| FlashPt = Non-flammable
|Section6={{Chembox Pharmacology
}}
| ATCCode_prefix = A01
| Section8 = {{Chembox Related
| ATCCode_suffix = AA04
| OtherAnions = ]<br/>]<br/>]
| OtherCations = ]<br/>]<br/>]
}}
}} }}
|Section8={{Chembox Related
'''Tin(II) fluoride''', known by the common name '''stannous fluoride''', is a chemical compound with the formula ''']]<sub>2</sub>'''. It is a colorless solid used as an ingredient in ]s that are typically more expensive than those that use ]. Stannous fluoride converts the calcium mineral ] into ], which makes ] more resistant to bacteria generated ] attacks. ] and ], on the other hand, become biologically inactive when combined with ].<ref>{{cite journal | date = April 1989 | journal = Journal of Dentistry | volume = 17 | issue = 2 | pages = 47–54 | pmid = 2732364 | title = The State of Fluorides in Toothpastes. | doi = 10.1016/0300-5712(89)90129-2 | last = Hattab | first = F. }}</ref> Used in combination with calcium minerals, sodium fluoride is ineffective while stannous fluoride remains effective in strengthening tooth enamel. Stannous fluoride has also been shown to be more effective than ] in controlling ].<ref>{{cite journal | year=1995 | journal = The Journal of Clinical Dentistry | volume = 6 | issue = Special Issue | pages = 54–58 | pmid = 8593194 | title = The clinical effect of a stabilized stannous fluoride dentifrice on plaque formation, gingivitis and gingival bleeding: a six-month study. | last1=Perlich | first1=MA | last2=Bacca | first2=LA | last3=Bollmer | first3=BW | last4=Lanzalaco | first4=AC | last5=McClanahan | first5=SF | last6=Sewak | first6=LK | last7=Beiswanger | first7=BB | last8=Eichold | first8=WA | last9=Hull | first9=JR }}</ref>
| OtherAnions = ], <br />], <br />]
| OtherCations = ], <br>], <br>], <br>], <br>], <br>], <br />], <br />], <br>]
}}
}}
'''Tin(II) fluoride''', commonly referred to commercially as '''stannous fluoride'''<ref name="Commonly Referred to as Stannous Fluoride">{{cite press release|title=National Inventors Hall of Fame Announces 2019 Inductees at CES|url=https://www.prnewswire.com/news-releases/national-inventors-hall-of-fame-announces-2019-inductees-at-ces-300774807.html|access-date=6 February 2019|publisher=National Inventors Hall of Fame}}</ref><ref name="Latin Names Variable Charge Metals">{{cite web|title=Latin Names Variable Charge Metals|url=http://nobel.scas.bcit.ca/chem0010/unit6/6.1.3_binaryvarcharge.htm|work=Nobel.SCAS.BCIT.ca/|publisher=British Columbia Institute of Technology Chemistry Department|access-date=16 June 2013|archive-date=22 July 2020|archive-url=https://web.archive.org/web/20200722102958/http://nobel.scas.bcit.ca/chem0010/unit6/6.1.3_binaryvarcharge.htm|url-status=dead}}</ref> (from ] ''{{lang|la|stannum}}'', 'tin'), is a ] with the formula SnF<sub>2</sub>. It is a colourless solid used as an ingredient in ]s.


==Oral health benefits==
Stannous fluoride was used, under the trade name '''"Fluoristan,"''' in the original formulation of the toothpaste ''],'' though it was later replaced with ], or '''"Fluoristat."''' It is the active ingredient in Crest Pro Health brand toothpaste. Crest Pro Health issues a warning on the tube that stannous fluoride may cause staining which can be avoided by proper brushing, and that its particular formulation is resistant to staining. Any stannous fluoride staining that occurs due to improper brushing is not permanent.
Stannous fluoride is an alternative to ] for the prevention of cavities (]). It was first released commercially in 1956, in ] toothpaste. It was discovered and developed by ] and William Nebergall. In recognition of their innovation, they were inducted into the ].<ref name="Commonly Referred to as Stannous Fluoride"/>


The fluoride in stannous fluoride helps to convert the calcium mineral ] in teeth into ], which makes ] more resistant to bacteria-generated ] attacks.<ref>{{Cite journal|last1=Groeneveld|first1=A.|last2=Purdell-Lewis|first2=D. J.|last3=Arends|first3=J.|date=1976|title=Remineralization of artificial caries lesions by stannous fluoride|journal=Caries Research|volume=10|issue=3|pages=189–200|issn=0008-6568|pmid=1063601|doi=10.1159/000260201}}</ref> The calcium present in plaque and saliva reacts with fluoride to form ] on the tooth surface; over time, this calcium fluoride dissolves to allow calcium and fluoride ions to interact with the tooth and form fluoride-containing apatite within the tooth structure.<ref name="pmid23192605">{{Cite journal|last1=Lussi|first1=Adrian|last2=Hellwig|first2=Elmar|last3=Klimek|first3=Joachim|date=2012|title=Fluorides - mode of action and recommendations for use|url=https://pubmed.ncbi.nlm.nih.gov/23192605|journal=Schweizer Monatsschrift für Zahnmedizin = Revue Mensuelle Suisse d'Odonto-Stomatologie = Rivista Mensile Svizzera di Odontologia e Stomatologia|volume=122|issue=11|pages=1030–1042|issn=0256-2855|pmid=23192605}}</ref> This chemical reaction inhibits demineralisation and can promote remineralisation of tooth decay. The resulting fluoride-containing apatite is more insoluble, and more resistant to acid and tooth decay.<ref name="pmid23192605" />
Stannous fluoride is also readily available in over-the-counter rinses.


In addition to fluoride, the stannous ion has benefits for oral health when incorporated in a toothpaste. At similar fluoride concentrations, toothpastes containing stannous fluoride have been shown to be more effective than toothpastes containing sodium fluoride for reducing the incidence of dental caries and ],<ref>{{Cite journal|last1=West|first1=N. X.|last2=He|first2=T.|last3=Macdonald|first3=E. L.|last4=Seong|first4=J.|last5=Hellin|first5=N.|last6=Barker|first6=M. L.|last7=Eversole|first7=S. L.|date=March 2017|title=Erosion protection benefits of stabilized SnF2 dentifrice versus an arginine–sodium monofluorophosphate dentifrice: results from in vitro and in situ clinical studies|journal=Clinical Oral Investigations|language=en|volume=21|issue=2|pages=533–540|doi=10.1007/s00784-016-1905-1|issn=1432-6981|pmc=5318474|pmid=27477786}}</ref><ref>{{Cite journal|last1=Ganss|first1=C.|last2=Lussi|first2=A.|last3=Grunau|first3=O.|last4=Klimek|first4=J.|last5=Schlueter|first5=N.|date=2011|title=Conventional and Anti-Erosion Fluoride Toothpastes: Effect on Enamel Erosion and Erosion-Abrasion|url=https://www.karger.com/Article/FullText/334318|journal=Caries Research|language=en|volume=45|issue=6|pages=581–589|doi=10.1159/000334318|pmid=22156703|s2cid=45156274|issn=0008-6568}}</ref><ref>{{Cite journal|last1=West|first1=Nicola X.|last2=He|first2=Tao|last3=Hellin|first3=Nikki|last4=Claydon|first4=Nicholas|last5=Seong|first5=Joon|last6=Macdonald|first6=Emma|last7=Farrell|first7=Svetlana|last8=Eusebio|first8=Rachelle|last9=Wilberg|first9=Aneta|date=August 2019|title=Randomized in situ clinical trial evaluating erosion protection efficacy of a 0.454% stannous fluoride dentifrice|journal=International Journal of Dental Hygiene|language=en|volume=17|issue=3|pages=261–267|doi=10.1111/idh.12379|issn=1601-5029|pmc=6850309|pmid=30556372}}</ref><ref>{{Cite journal|date=2020-02-12|title=Efficacy of a Stannous-containing Dentifrice for Protecting Against Combined Erosive and Abrasive Tooth Wear In Situ|url=|journal=Oral Health and Preventive Dentistry|volume=18|issue=1|pages=619–624|doi=10.3290/j.ohpd.a44926|pmid=32700515|last1=Zhao|first1=X.|last2=He|first2=T.|last3=He|first3=Y.|last4=Chen|first4=H.}}</ref><ref>{{Cite journal|last1=Stookey|first1=G.K.|last2=Mau|first2=M.S.|last3=Isaacs|first3=R.L.|last4=Gonzalez-Gierbolini|first4=C.|last5=Bartizek|first5=R.D.|last6=Biesbrock|first6=A.R.|date=2004|title=The Relative Anticaries Effectiveness of Three Fluoride-Containing Dentifrices in Puerto Rico|url=https://www.karger.com/Article/FullText/80584|journal=Caries Research|language=en|volume=38|issue=6|pages=542–550|doi=10.1159/000080584|pmid=15528909|s2cid=489634|issn=0008-6568|doi-access=free}}</ref> as well as reducing ].<ref>{{Cite journal|last1=Parkinson|first1=C. R.|last2=Milleman|first2=K. R.|last3=Milleman|first3=J. L.|date=2020-03-26|title=Gingivitis efficacy of a 0.454% w/w stannous fluoride dentifrice: a 24-week randomized controlled trial|journal=BMC Oral Health|volume=20|issue=1|pages=89|doi=10.1186/s12903-020-01079-6|issn=1472-6831|pmc=7098169|pmid=32216778 |doi-access=free }}</ref><ref>{{Cite journal|last1=Hu|first1=Deyu|last2=Li|first2=Xue|last3=Liu|first3=Hongchun|last4=Mateo|first4=Luis R.|last5=Sabharwal|first5=Amarpreet|last6=Xu|first6=Guofeng|last7=Szewczyk|first7=Gregory|last8=Ryan|first8=Maria|last9=Zhang|first9=Yun-Po|date=April 2019|title=Evaluation of a stabilized stannous fluoride dentifrice on dental plaque and gingivitis in a randomized controlled trial with 6-month follow-up|url=|journal=The Journal of the American Dental Association|volume=150|issue=4|pages=S32–S37|doi=10.1016/j.adaj.2019.01.005|pmid=30797257|s2cid=73488958|issn=0002-8177}}</ref><ref>{{Cite journal|last1=Mankodi|first1=Suru|last2=Bartizek|first2=Robert D.|last3=Winston|first3=J. Leslie|last4=Biesbrock|first4=Aaron R.|last5=McClanahan|first5=Stephen F.|last6=He|first6=Tao|date=2005|title=Anti-gingivitis efficacy of a stabilized 0.454% stannous fluoride/sodium hexametaphosphate dentifrice|journal=Journal of Clinical Periodontology|language=en|volume=32|issue=1|pages=75–80|doi=10.1111/j.1600-051X.2004.00639.x|pmid=15642062|issn=1600-051X|doi-access=free}}</ref><ref>{{Cite journal|last1=Archila|first1=Luis|last2=Bartizek|first2=Robert D.|last3=Winston|first3=J. Leslie|last4=Biesbrock|first4=Aaron R.|last5=McClanahan|first5=Stephen F.|last6=He|first6=Tao|date=2004|title=The Comparative Efficacy of Stabilized Stannous Fluoride/Sodium Hexametaphosphate Dentifrice and Sodium Fluoride/Triclosan/Copolymer Dentifrice for the Control of Gingivitis: A 6-Month Randomized Clinical Study|url=|journal=Journal of Periodontology|language=en|volume=75|issue=12|pages=1592–1599|doi=10.1902/jop.2004.75.12.1592|pmid=15732859|issn=1943-3670}}</ref><ref>{{Cite journal|last1=Clark-Perry|first1=Danielle|last2=Levin|first2=Liran|date=December 2020|title=Comparison of new formulas of stannous fluoride toothpastes with other commercially available fluoridated toothpastes: A systematic review and meta-analysis of randomised controlled trials|journal=International Dental Journal|language=en|volume=70|issue=6|pages=418–426|doi=10.1111/idj.12588|pmid=32621315|pmc=9379195 |s2cid=220336087}}</ref> Some stannous fluoride-containing toothpastes also contain ingredients that allow for better stain removal.<ref name="pmid17410949">{{Cite journal|last1=He|first1=Tao|last2=Baker|first2=Robert|last3=Bartizek|first3=Robert D.|last4=Biesbrock|first4=Aaron R.|last5=Chaves|first5=Eros|last6=Terézhalmy|first6=Geza|date=2007|title=Extrinsic stain removal efficacy of a stannous fluoride dentifrice with sodium hexametaphosphate|url=https://pubmed.ncbi.nlm.nih.gov/17410949|journal=The Journal of Clinical Dentistry|volume=18|issue=1|pages=7–11|issn=0895-8831|pmid=17410949}}</ref><ref name="pmid31872105">{{Cite journal|last1=Johannsen|first1=A.|last2=Emilson|first2=C.-G.|last3=Johannsen|first3=G.|last4=Konradsson|first4=K.|last5=Lingström|first5=P.|last6=Ramberg|first6=P.|date=December 2019|title=Effects of stabilized stannous fluoride dentifrice on dental calculus, dental plaque, gingivitis, halitosis and stain: A systematic review|url=|journal=Heliyon|volume=5|issue=12|pages=e02850|doi=10.1016/j.heliyon.2019.e02850|doi-access=free |issn=2405-8440|pmc=6909063|pmid=31872105|bibcode=2019Heliy...502850J }}</ref> Stabilised stannous fluoride formulations allow for greater bioavailability of the stannous and fluoride ion, increasing their oral health benefits.<ref>{{Cite journal|last=White|first=D. J.|date=1995|title=A "return" to stannous fluoride dentifrices|url=https://pubmed.ncbi.nlm.nih.gov/8593190|journal=The Journal of Clinical Dentistry|volume=6|pages=29–36|issn=0895-8831|pmid=8593190}}</ref><ref>{{Cite journal|last=Tinanoff|first=N.|date=1995|title=Progress regarding the use of stannous fluoride in clinical dentistry|url=https://pubmed.ncbi.nlm.nih.gov/8593191|journal=The Journal of Clinical Dentistry|volume=6|pages=37–40|issn=0895-8831|pmid=8593191}}</ref> A systematic review revealed stabilised stannous fluoride-containing toothpastes had a positive effect on the reduction of ], gingivitis and staining, with a significant reduction in ] and ] (bad breath) compared to other toothpastes.<ref name="pmid31872105" /> A specific formulation of stabilised stannous fluoride toothpastes has shown superior protection against dental erosion and ] compared to other fluoride-containing and fluoride-free toothpastes.<ref>{{Cite journal|last1=West|first1=Nicola X.|last2=He|first2=Tao|last3=Zou|first3=Yuanshu|last4=DiGennaro|first4=Joe|last5=Biesbrock|first5=Aaron|last6=Davies|first6=Maria|date=February 2021|title=Bioavailable gluconate chelated stannous fluoride toothpaste meta-analyses: Effects on dentine hypersensitivity and enamel erosion|journal=Journal of Dentistry|volume=105|pages=103566|doi=10.1016/j.jdent.2020.103566|issn=1879-176X|pmid=33383100|s2cid=229940161|doi-access=free|hdl=1983/34d78138-703d-484f-864f-ece3d3610d64|hdl-access=free}}</ref>

Stannous fluoride was once used under the ] Fluoristan in the original formulation of the toothpaste brand ], though it was later replaced with ] under the trade name Fluoristat. Stabilised stannous fluoride is now the active ingredient in Crest/] Pro-Health brand toothpaste. Although concerns have been previously raised that stannous fluoride may cause tooth staining, this can be avoided by proper brushing and by using a stabilised stannous fluoride toothpaste.<ref name="pmid17410949" /><ref name="pmid31872105" /> Any stannous fluoride staining that occurs due to improper brushing is not permanent, and Crest/Oral B Pro-Health states that its particular formulation is resistant to staining.

==Production==
SnF<sub>2</sub> can be prepared by evaporating a solution of SnO in 40% ].<ref name = "Greenwood">{{Greenwood&Earnshaw}}</ref> SnF<sub>2</sub> can be prepared by evaporating a solution of SnO in 40% ].<ref name = "Greenwood">{{Greenwood&Earnshaw}}</ref>

:SnO + 2 HF → SnF<sub>2</sub> + H<sub>2</sub>O


==Aqueous solutions== ==Aqueous solutions==
Readily soluble in water SnF<sub>2</sub> is hydrolysed forming at low concentration species such as SnOH<sup>+</sup>, Sn(OH)<sub>2</sub> and Sn(OH)<sub>3</sub><sup>−</sup> and at higher concentrations, predominantly polynuclear species, Sn<sub>2</sub>(OH)<sub>2</sub><sup>2+</sup> and Sn<sub>3</sub>(OH)<sub>4</sub><sup>2+</sup>.<ref>{{cite journal Readily soluble in water, SnF<sub>2</sub> is hydrolysed. At low concentration, it forms species such as SnOH<sup>+</sup>, Sn(OH)<sub>2</sub> and Sn(OH)<sub>3</sub><sup>−</sup>. At higher concentrations, predominantly polynuclear species are formed, including Sn<sub>2</sub>(OH)<sub>2</sub><sup>2+</sup> and Sn<sub>3</sub>(OH)<sub>4</sub><sup>2+</sup>.<ref>{{cite journal
| title = A critical review of thermodynamic data for inorganic tin species | title = A critical review of thermodynamic data for inorganic tin species
| author = Séby F., Potin-Gautier M., Giffaut E., Donard O. F. X.
| journal = Geochimica et Cosmochimica Acta | journal = Geochimica et Cosmochimica Acta
| year = 2001 | year = 2001
Line 59: Line 79:
| doi = 10.1016/S0016-7037(01)00645-7 | doi = 10.1016/S0016-7037(01)00645-7
| bibcode=2001GeCoA..65.3041S | bibcode=2001GeCoA..65.3041S
| last1 = Séby
}}</ref> Aqueous solutions readily oxidise to form insoluble precipitates of Sn<sup>IV</sup> which are ineffective as a dental prophylactic.<ref>David B. Troy, 2005, ''Remington: The Science and Practice of Pharmacy'', Lippincott Williams & Wilkins, ISBN 0781746736, 9780781746731</ref> Studies of the oxidation using ] on frozen samples suggests that O<sub>2</sub> is the oxidizing species.<ref>{{cite journal
| first1 = F.
| last2 = Potin-Gautier
| first2 = M.
| last3 = Giffaut
| first3 = E.
| last4 = Donard
| first4 = O.F.X.
}}</ref> Aqueous solutions readily oxidise to form insoluble precipitates of Sn<sup>IV</sup>, which are ineffective as a dental prophylactic.<ref>David B. Troy, 2005, ''Remington: The Science and Practice of Pharmacy'', Lippincott Williams & Wilkins, {{ISBN|0-7817-4673-6}}, {{ISBN|978-0-7817-4673-1}}</ref> Studies of the oxidation using ] on frozen samples suggests that O<sub>2</sub> is the oxidizing species.<ref>{{cite journal
| title = Oxidation of SnF<sub>2</sub> stannous fluoride in aqueous solutions | title = Oxidation of SnF<sub>2</sub> stannous fluoride in aqueous solutions
| author = Denes G; Lazanas G.
| journal = Hyperfine Interactions | journal = Hyperfine Interactions
| year = 1994 | year = 1994
Line 68: Line 95:
| pages = 435–439 | pages = 435–439
| doi = 10.1007/BF02069152 | doi = 10.1007/BF02069152
| bibcode = 1994HyInt..90..435D
| last1 = Denes
| first1 = Georges
| last2 = Lazanas
| first2 = George
| s2cid = 96184099
}}</ref> }}</ref>


==Lewis acidity== ==Lewis acidity==
SnF<sub>2</sub> is a ] forming, for example, a 1:1 complex (CH<sub>3</sub>)<sub>3</sub>NSnF<sub>2</sub> and 2:1 complex <sub>2</sub>SnF<sub>2</sub> with ],<ref>{{cite journal SnF<sub>2</sub> acts as a ]. For example, it forms a 1:1 complex (CH<sub>3</sub>)<sub>3</sub>NSnF<sub>2</sub> and 2:1 complex <sub>2</sub>SnF<sub>2</sub> with ],<ref>{{cite journal
| title = Synthesis and studies of trimethylamine adducts with tin(II) halides | title = Synthesis and studies of trimethylamine adducts with tin(II) halides
| name-list-style=amp | journal = Inorg. Chem.
| author = Chung Chun Hsu and R. A. Geanangel
| journal = Inorg. Chem.
| year = 1977 | year = 1977
| volume = 16 | volume = 16
Line 80: Line 112:
| pages = 2529–2534 | pages = 2529–2534
| doi = 10.1021/ic50176a022 | doi = 10.1021/ic50176a022
}}</ref> and a 1:1 complex with ], (CH<sub>3</sub>)<sub>2</sub>SO.SnF<sub>2</sub>.<ref>{{cite journal | last1=Hsu | first1=C. C. | last2=Geanangel | first2=R. A. }}</ref> and a 1:1 complex with ], (CH<sub>3</sub>)<sub>2</sub>SO·SnF<sub>2</sub>.<ref>{{cite journal
| title = Donor and acceptor behavior of divalent tin compounds | title = Donor and acceptor behavior of divalent tin compounds
| name-list-style=amp | journal = Inorg. Chem.
| author = Chung Chun Hsu and R. A. Geanangel
| journal = Inorg. Chem.
| year = 1980 | year = 1980
| volume = 19 | volume = 19
Line 89: Line 120:
| pages = 110–119 | pages = 110–119
| doi = 10.1021/ic50203a024 | doi = 10.1021/ic50203a024
| last1=Hsu | first1=Chung Chun | last2=Geanangel | first2=R. A. }}</ref> <br />In solutions containing the fluoride ion, F<sup>−</sup>, it forms the fluoride complexes SnF<sub>3</sub><sup>−</sup>, Sn<sub>2</sub>F<sub>5</sub><sup>−</sup>, and SnF<sub>2</sub>(OH<sub>2</sub>).<ref name = "Wiberg&Holleman">Egon Wiberg, Arnold Frederick Holleman (2001) ''Inorganic Chemistry'', Elsevier {{ISBN|0-12-352651-5}}.</ref> Crystallization from an aqueous solution containing ] produces compounds containing polynuclear anions, e.g. NaSn<sub>2</sub>F<sub>5</sub> or Na<sub>4</sub>Sn<sub>3</sub>F<sub>10</sub> depending on the reaction conditions, rather than NaSnF<sub>3</sub>.<ref name = "Greenwood"/> The compound NaSnF<sub>3</sub>, containing the pyramidal SnF<sub>3</sub><sup>−</sup> anion, can be produced from a pyridine–water solution.<ref>{{cite journal
}}</ref> <br />
In solutions containing fluoride ion, F<sup>−</sup> it forms fluoride complexes SnF<sub>3</sub><sup>−</sup>, Sn<sub>2</sub>F<sub>5</sub><sup>−</sup>, SnF<sub>2</sub>(OH<sub>2</sub>).<ref name = "Wiberg&Holleman">Egon Wiberg, Arnold Frederick Holleman (2001) ''Inorganic Chemistry'', Elsevier ISBN 0123526515</ref> Crystallization from an aqueous solution containing ] produces compounds containing polynuclear anions, e.g. NaSn<sub>2</sub>F<sub>5</sub> or Na<sub>4</sub>Sn<sub>3</sub>F<sub>10</sub> depending on the reaction conditions, rather than NaSnF<sub>3</sub>.<ref name = "Greenwood"/> The compound NaSnF<sub>3</sub> containing the pyramidal SnF<sub>3</sub><sup>−</sup> anion can however be produced from a pyridine – water solution.<ref>{{cite journal
| title = Synthesis and crystal structure of two tin fluoride materials: NaSnF<sub>3</sub> (BING-12) and Sn<sub>3</sub>F<sub>3</sub>PO<sub>4</sub> | title = Synthesis and crystal structure of two tin fluoride materials: NaSnF<sub>3</sub> (BING-12) and Sn<sub>3</sub>F<sub>3</sub>PO<sub>4</sub>
| author = Salami T.O. , Zavalij P.Y. and Oliver S.R.J.
| journal = Journal of Solid State Chemistry | journal = Journal of Solid State Chemistry
| year = 2004 | year = 2004
Line 99: Line 128:
| pages = 800–805 | pages = 800–805
| doi = 10.1016/j.jssc.2003.09.013 | doi = 10.1016/j.jssc.2003.09.013
| bibcode = 2004JSSCh.177..800S
}}</ref>
| last1 = Salami
Other compounds containing the pyramidal SnF<sub>3</sub><sup>−</sup> anion are known for example Ca(SnF<sub>3</sub>)<sub>2</sub>
| first1 = Tolulope O.
<ref>{{cite journal
| last2 = Zavalij
| first2 = Peter Y.
| last3 = Oliver
| first3 = Scott R.J
}}</ref> Other compounds containing the pyramidal SnF<sub>3</sub><sup>−</sup> anion are known, such as {{chem2|Ca(SnF3)2}}.<ref>{{cite journal
| title =Synthesis and Crystal Structure of Calcium Trifluorostannate(II) | title =Synthesis and Crystal Structure of Calcium Trifluorostannate(II)
| author = Kokunov Y.V., Detkov D. G., Gorbunova Yu. E.,Ershova M. M. , Mikhailov Yu. N. |author1=Kokunov Y. V. |author2=Detkov D. G. |author3=Gorbunova Yu. E. |author4=Ershova M. M. |author5=Mikhailov Yu. N. | journal = Doklady Chemistry
| journal = Doklady Chemistry
| year = 2001 | year = 2001
| volume = 376 | volume = 376
Line 110: Line 143:
| pages = 52–54 | pages = 52–54
| doi = 10.1023/A:1018855109716 | doi = 10.1023/A:1018855109716
}}</ref> |s2cid=91430538 }}</ref>


==Reducing properties== ==Reducing properties==
SnF<sub>2</sub> is a ], with a standard reduction potential E<sup>o</sup> (Sn<sup>IV</sup>/ Sn<sup>II</sup>) = +0.15V.<ref>{{Housecroft2nd}}</ref> Solutions in HF are readily oxidised by a range of oxidizing agents, O<sub>2</sub>, SO<sub>2</sub> or F<sub>2</sub>, to form the mixed valence compound, Sn<sub>3</sub>F<sub>8</sub> (containing Sn<sup>II</sup> and Sn<sup>IV</sup> and no Sn – Sn bonds).<ref name = "Greenwood"/> SnF<sub>2</sub> is a ], with a standard reduction potential of E<sup>o</sup> (Sn<sup>IV</sup>/ Sn<sup>II</sup>) = +0.15&nbsp;V.<ref>{{Housecroft2nd}}</ref> Solutions in HF are readily oxidised by a range of oxidizing agents (O<sub>2</sub>, SO<sub>2</sub> or F<sub>2</sub>) to form the mixed-valence compound Sn<sub>3</sub>F<sub>8</sub> (containing Sn<sup>II</sup> and Sn<sup>IV</sup> and no Sn–Sn bonds).<ref name = "Greenwood"/>


==Structure== ==Structure==
The monoclinic form contains tetramers, Sn<sub>4</sub>F<sub>8</sub>, where there are two distinct coordination environments for the Sn atoms but in each case there are three nearest neighbours with Sn at the apex of a trigonal pyramid and the lone pair of electrons is sterically active.<ref name = "Wells">Wells A.F. (1984) ''Structural Inorganic Chemistry'' 5th edition Oxford Science Publications ISBN 0-19-855370-6</ref> Other forms reported have the GeF<sub>2</sub> and TeO<sub>2</sub> structures.<ref name = "Wells"/> The ] form contains tetramers, Sn<sub>4</sub>F<sub>8</sub>, where there are two distinct coordination environments for the Sn atoms. In each case, there are three nearest neighbours, with Sn at the apex of a trigonal pyramid, and the lone pair of electrons sterically active.<ref name = "Wells">Wells A.F. (1984) ''Structural Inorganic Chemistry'' 5th edition Oxford Science Publications {{ISBN|0-19-855370-6}}</ref> Other forms reported have the ] and ] structures.<ref name = "Wells"/>


==Molecular SnF<sub>2</sub>== ==Molecular SnF<sub>2</sub>==
In the vapour phase SnF<sub>2</sub> forms monomers as well as dimers and trimers.<ref name="Wiberg&Holleman"/> Monomeric SnF<sub>2</sub> is a non-linear molecule with an Sn-F bond length of 206 pm.<ref name = "Wiberg&Holleman"/><br /> In the vapour phase, SnF<sub>2</sub> forms monomers, dimers, and trimers.<ref name="Wiberg&Holleman"/> Monomeric SnF<sub>2</sub> is a non-linear with an Sn−F bond length of 206 pm.<ref name = "Wiberg&Holleman"/> Complexes of SnF<sub>2</sub>, sometimes called difluorostannylene, with an ] and aromatic compounds deposited in an argon matrix at 12 K have been reported.<ref>{{cite journal
Complexes of SnF<sub>2</sub>, sometimes called difluorostannylene, with an alkyne and aromatic compounds deposited in an argon matrix at 12 K have been reported
<ref>{{cite journal
| title = Matrix IR spectra and quantum chemical studies of the reaction between difluorostannylene and hept-1-yne. The first direct observation of a carbene analog π-complex with alkyne | title = Matrix IR spectra and quantum chemical studies of the reaction between difluorostannylene and hept-1-yne. The first direct observation of a carbene analog π-complex with alkyne
| first1 = SE
| author = S. E. Boganov, V. I. Faustov, M. P. Egorov and O. M. Nefedov
| last1 = Bogdanov
| journal = Russian Chemical Bulletin Volume
| first2 = VI
| last2 = Faustov
| first3 = MP
| last3 = Egorov
| first4 = OM
| last4 = Nefedov
| journal = Russian Chemical Bulletin
| year = 1994 | year = 1994
| volume = 43 | volume = 43
| issue = 1 | issue = 1
| pages = 47–49 | pages = 47–49
| doi = 10.1007/BF00699133 | doi = 10.1007/BF00699133
| s2cid = 97064510
}}</ref>
<ref>{{cite journal }}</ref><ref>{{cite journal
| title = Study of complexation between difluorostannylene and aromatics by matrix IR spectroscopy | title = Study of complexation between difluorostannylene and aromatics by matrix IR spectroscopy
| author = S. E. Boganov, M. P. Egorov and O. M. Nefedov | author = S. E. Boganov, M. P. Egorov and O. M. Nefedov
Line 140: Line 178:
| pages = 98–103 | pages = 98–103
| doi = 10.1007/BF02494408 | doi = 10.1007/BF02494408
| s2cid = 94004320
}}</ref> }}</ref>


==Safety==
Stannous fluoride can cause redness and irritation if it is inhaled or comes into contact with the eyes. If ingested, it can cause abdominal pains and shock.<ref>{{cite web|url=https://www.ilo.org/dyn/icsc/showcard.display?p_lang=en&p_card_id=0860&p_version=2|title=Stannous fluoride (International Chemical Safety Cards: 0860)|publisher=International Labour Organization|access-date=June 21, 2021}}</ref> Rare but serious allergic reactions are possible; symptoms include itching, swelling, and difficulty breathing. Certain formulations of stannous fluoride in dental products may cause mild ]; this is not permanent and can be removed by brushing, or can be prevented by using a stabilised stannous fluoride toothpaste.<ref name="pmid17410949" /><ref name="pmid31872105" /><ref>{{cite web|url=http://www.webmd.com/drugs/mono-7156-STANNOUS+FLUORIDE+GEL+-+DENTAL.aspx?drugid=75277&drugname=stannous+fluoride+dent|title=Stannous Fluoride-Dental|publisher=WebMD|access-date=March 11, 2014}}</ref>
{{clear}}
==References== ==References==
{{reflist|2}} {{reflist|30em}}

{{Tin compounds}} {{Tin compounds}}
{{Stomatological preparations}} {{Stomatological preparations}}
{{fluorine compounds}}


{{DEFAULTSORT:Tin(Ii) Fluoride}} {{DEFAULTSORT:Tin(Ii) Fluoride}}
] ]
] ]
]
] ]

]
]
]
]
]

Latest revision as of 03:58, 9 November 2024

Tin(II) fluoride
  Sn;   F
Names
IUPAC name Tin(II) fluoride
Other names Stannous fluoride
Identifiers
CAS Number
3D model (JSmol)
ECHA InfoCard 100.029.090 Edit this at Wikidata
PubChem CID
RTECS number
  • XQ3450000
UNII
UN number 3288
CompTox Dashboard (EPA)
InChI
  • InChI=1S/2FH.Sn/h2*1H;/q;;+2/p-2
SMILES
  • FF
Properties
Chemical formula SnF2
Molar mass 156.69 g/mol
Appearance colorless solid
Density 4.57 g/cm
Melting point 213 °C (415 °F; 486 K)
Boiling point 850 °C (1,560 °F; 1,120 K)
Solubility in water 31 g/100 mL (0 °C);
35 g/100 mL (20 °C);
78.5 g/100 mL (106 °C)
Solubility soluble in KOH, KF;
negligible in ethanol, ether, chloroform
Structure
Crystal structure Monoclinic, mS48
Space group C2/c, No. 15
Pharmacology
ATC code A01AA04 (WHO)
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2 0 0
Flash point Non-flammable
Safety data sheet (SDS) ICSC 0860
Related compounds
Other anions Tin(II) chloride,
Tin(II) bromide,
Tin(II) iodide
Other cations Difluorocarbene,
Carbon tetrafluoride,
Difluorosilylene,
Silicon tetrafluoride,
Difluorogermylene,
Germanium tetrafluoride,
Tin tetrafluoride,
Lead(II) fluoride,
Lead(IV) fluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Tin(II) fluoride, commonly referred to commercially as stannous fluoride (from Latin stannum, 'tin'), is a chemical compound with the formula SnF2. It is a colourless solid used as an ingredient in toothpastes.

Oral health benefits

Stannous fluoride is an alternative to sodium fluoride for the prevention of cavities (tooth decay). It was first released commercially in 1956, in Crest toothpaste. It was discovered and developed by Joseph Muhler and William Nebergall. In recognition of their innovation, they were inducted into the Inventor's Hall of Fame.

The fluoride in stannous fluoride helps to convert the calcium mineral hydroxyapatite in teeth into fluorapatite, which makes tooth enamel more resistant to bacteria-generated acid attacks. The calcium present in plaque and saliva reacts with fluoride to form calcium fluoride on the tooth surface; over time, this calcium fluoride dissolves to allow calcium and fluoride ions to interact with the tooth and form fluoride-containing apatite within the tooth structure. This chemical reaction inhibits demineralisation and can promote remineralisation of tooth decay. The resulting fluoride-containing apatite is more insoluble, and more resistant to acid and tooth decay.

In addition to fluoride, the stannous ion has benefits for oral health when incorporated in a toothpaste. At similar fluoride concentrations, toothpastes containing stannous fluoride have been shown to be more effective than toothpastes containing sodium fluoride for reducing the incidence of dental caries and dental erosion, as well as reducing gingivitis. Some stannous fluoride-containing toothpastes also contain ingredients that allow for better stain removal. Stabilised stannous fluoride formulations allow for greater bioavailability of the stannous and fluoride ion, increasing their oral health benefits. A systematic review revealed stabilised stannous fluoride-containing toothpastes had a positive effect on the reduction of plaque, gingivitis and staining, with a significant reduction in calculus and halitosis (bad breath) compared to other toothpastes. A specific formulation of stabilised stannous fluoride toothpastes has shown superior protection against dental erosion and dentine hypersensitivity compared to other fluoride-containing and fluoride-free toothpastes.

Stannous fluoride was once used under the trade name Fluoristan in the original formulation of the toothpaste brand Crest, though it was later replaced with sodium monofluorophosphate under the trade name Fluoristat. Stabilised stannous fluoride is now the active ingredient in Crest/Oral B Pro-Health brand toothpaste. Although concerns have been previously raised that stannous fluoride may cause tooth staining, this can be avoided by proper brushing and by using a stabilised stannous fluoride toothpaste. Any stannous fluoride staining that occurs due to improper brushing is not permanent, and Crest/Oral B Pro-Health states that its particular formulation is resistant to staining.

Production

SnF2 can be prepared by evaporating a solution of SnO in 40% HF.

SnO + 2 HF → SnF2 + H2O

Aqueous solutions

Readily soluble in water, SnF2 is hydrolysed. At low concentration, it forms species such as SnOH, Sn(OH)2 and Sn(OH)3. At higher concentrations, predominantly polynuclear species are formed, including Sn2(OH)2 and Sn3(OH)4. Aqueous solutions readily oxidise to form insoluble precipitates of Sn, which are ineffective as a dental prophylactic. Studies of the oxidation using Mössbauer spectroscopy on frozen samples suggests that O2 is the oxidizing species.

Lewis acidity

SnF2 acts as a Lewis acid. For example, it forms a 1:1 complex (CH3)3NSnF2 and 2:1 complex 2SnF2 with trimethylamine, and a 1:1 complex with dimethylsulfoxide, (CH3)2SO·SnF2.
In solutions containing the fluoride ion, F, it forms the fluoride complexes SnF3, Sn2F5, and SnF2(OH2). Crystallization from an aqueous solution containing NaF produces compounds containing polynuclear anions, e.g. NaSn2F5 or Na4Sn3F10 depending on the reaction conditions, rather than NaSnF3. The compound NaSnF3, containing the pyramidal SnF3 anion, can be produced from a pyridine–water solution. Other compounds containing the pyramidal SnF3 anion are known, such as Ca(SnF3)2.

Reducing properties

SnF2 is a reducing agent, with a standard reduction potential of E (Sn/ Sn) = +0.15 V. Solutions in HF are readily oxidised by a range of oxidizing agents (O2, SO2 or F2) to form the mixed-valence compound Sn3F8 (containing Sn and Sn and no Sn–Sn bonds).

Structure

The monoclinic form contains tetramers, Sn4F8, where there are two distinct coordination environments for the Sn atoms. In each case, there are three nearest neighbours, with Sn at the apex of a trigonal pyramid, and the lone pair of electrons sterically active. Other forms reported have the GeF2 and paratellurite structures.

Molecular SnF2

In the vapour phase, SnF2 forms monomers, dimers, and trimers. Monomeric SnF2 is a non-linear with an Sn−F bond length of 206 pm. Complexes of SnF2, sometimes called difluorostannylene, with an alkyne and aromatic compounds deposited in an argon matrix at 12 K have been reported.

Safety

Stannous fluoride can cause redness and irritation if it is inhaled or comes into contact with the eyes. If ingested, it can cause abdominal pains and shock. Rare but serious allergic reactions are possible; symptoms include itching, swelling, and difficulty breathing. Certain formulations of stannous fluoride in dental products may cause mild tooth discoloration; this is not permanent and can be removed by brushing, or can be prevented by using a stabilised stannous fluoride toothpaste.

References

  1. ^ "National Inventors Hall of Fame Announces 2019 Inductees at CES" (Press release). National Inventors Hall of Fame. Retrieved 6 February 2019.
  2. "Latin Names Variable Charge Metals". Nobel.SCAS.BCIT.ca/. British Columbia Institute of Technology Chemistry Department. Archived from the original on 22 July 2020. Retrieved 16 June 2013.
  3. Groeneveld, A.; Purdell-Lewis, D. J.; Arends, J. (1976). "Remineralization of artificial caries lesions by stannous fluoride". Caries Research. 10 (3): 189–200. doi:10.1159/000260201. ISSN 0008-6568. PMID 1063601.
  4. ^ Lussi, Adrian; Hellwig, Elmar; Klimek, Joachim (2012). "Fluorides - mode of action and recommendations for use". Schweizer Monatsschrift für Zahnmedizin = Revue Mensuelle Suisse d'Odonto-Stomatologie = Rivista Mensile Svizzera di Odontologia e Stomatologia. 122 (11): 1030–1042. ISSN 0256-2855. PMID 23192605.
  5. West, N. X.; He, T.; Macdonald, E. L.; Seong, J.; Hellin, N.; Barker, M. L.; Eversole, S. L. (March 2017). "Erosion protection benefits of stabilized SnF2 dentifrice versus an arginine–sodium monofluorophosphate dentifrice: results from in vitro and in situ clinical studies". Clinical Oral Investigations. 21 (2): 533–540. doi:10.1007/s00784-016-1905-1. ISSN 1432-6981. PMC 5318474. PMID 27477786.
  6. Ganss, C.; Lussi, A.; Grunau, O.; Klimek, J.; Schlueter, N. (2011). "Conventional and Anti-Erosion Fluoride Toothpastes: Effect on Enamel Erosion and Erosion-Abrasion". Caries Research. 45 (6): 581–589. doi:10.1159/000334318. ISSN 0008-6568. PMID 22156703. S2CID 45156274.
  7. West, Nicola X.; He, Tao; Hellin, Nikki; Claydon, Nicholas; Seong, Joon; Macdonald, Emma; Farrell, Svetlana; Eusebio, Rachelle; Wilberg, Aneta (August 2019). "Randomized in situ clinical trial evaluating erosion protection efficacy of a 0.454% stannous fluoride dentifrice". International Journal of Dental Hygiene. 17 (3): 261–267. doi:10.1111/idh.12379. ISSN 1601-5029. PMC 6850309. PMID 30556372.
  8. Zhao, X.; He, T.; He, Y.; Chen, H. (2020-02-12). "Efficacy of a Stannous-containing Dentifrice for Protecting Against Combined Erosive and Abrasive Tooth Wear In Situ". Oral Health and Preventive Dentistry. 18 (1): 619–624. doi:10.3290/j.ohpd.a44926. PMID 32700515.
  9. Stookey, G.K.; Mau, M.S.; Isaacs, R.L.; Gonzalez-Gierbolini, C.; Bartizek, R.D.; Biesbrock, A.R. (2004). "The Relative Anticaries Effectiveness of Three Fluoride-Containing Dentifrices in Puerto Rico". Caries Research. 38 (6): 542–550. doi:10.1159/000080584. ISSN 0008-6568. PMID 15528909. S2CID 489634.
  10. Parkinson, C. R.; Milleman, K. R.; Milleman, J. L. (2020-03-26). "Gingivitis efficacy of a 0.454% w/w stannous fluoride dentifrice: a 24-week randomized controlled trial". BMC Oral Health. 20 (1): 89. doi:10.1186/s12903-020-01079-6. ISSN 1472-6831. PMC 7098169. PMID 32216778.
  11. Hu, Deyu; Li, Xue; Liu, Hongchun; Mateo, Luis R.; Sabharwal, Amarpreet; Xu, Guofeng; Szewczyk, Gregory; Ryan, Maria; Zhang, Yun-Po (April 2019). "Evaluation of a stabilized stannous fluoride dentifrice on dental plaque and gingivitis in a randomized controlled trial with 6-month follow-up". The Journal of the American Dental Association. 150 (4): S32 – S37. doi:10.1016/j.adaj.2019.01.005. ISSN 0002-8177. PMID 30797257. S2CID 73488958.
  12. Mankodi, Suru; Bartizek, Robert D.; Winston, J. Leslie; Biesbrock, Aaron R.; McClanahan, Stephen F.; He, Tao (2005). "Anti-gingivitis efficacy of a stabilized 0.454% stannous fluoride/sodium hexametaphosphate dentifrice". Journal of Clinical Periodontology. 32 (1): 75–80. doi:10.1111/j.1600-051X.2004.00639.x. ISSN 1600-051X. PMID 15642062.
  13. Archila, Luis; Bartizek, Robert D.; Winston, J. Leslie; Biesbrock, Aaron R.; McClanahan, Stephen F.; He, Tao (2004). "The Comparative Efficacy of Stabilized Stannous Fluoride/Sodium Hexametaphosphate Dentifrice and Sodium Fluoride/Triclosan/Copolymer Dentifrice for the Control of Gingivitis: A 6-Month Randomized Clinical Study". Journal of Periodontology. 75 (12): 1592–1599. doi:10.1902/jop.2004.75.12.1592. ISSN 1943-3670. PMID 15732859.
  14. Clark-Perry, Danielle; Levin, Liran (December 2020). "Comparison of new formulas of stannous fluoride toothpastes with other commercially available fluoridated toothpastes: A systematic review and meta-analysis of randomised controlled trials". International Dental Journal. 70 (6): 418–426. doi:10.1111/idj.12588. PMC 9379195. PMID 32621315. S2CID 220336087.
  15. ^ He, Tao; Baker, Robert; Bartizek, Robert D.; Biesbrock, Aaron R.; Chaves, Eros; Terézhalmy, Geza (2007). "Extrinsic stain removal efficacy of a stannous fluoride dentifrice with sodium hexametaphosphate". The Journal of Clinical Dentistry. 18 (1): 7–11. ISSN 0895-8831. PMID 17410949.
  16. ^ Johannsen, A.; Emilson, C.-G.; Johannsen, G.; Konradsson, K.; Lingström, P.; Ramberg, P. (December 2019). "Effects of stabilized stannous fluoride dentifrice on dental calculus, dental plaque, gingivitis, halitosis and stain: A systematic review". Heliyon. 5 (12): e02850. Bibcode:2019Heliy...502850J. doi:10.1016/j.heliyon.2019.e02850. ISSN 2405-8440. PMC 6909063. PMID 31872105.
  17. White, D. J. (1995). "A "return" to stannous fluoride dentifrices". The Journal of Clinical Dentistry. 6: 29–36. ISSN 0895-8831. PMID 8593190.
  18. Tinanoff, N. (1995). "Progress regarding the use of stannous fluoride in clinical dentistry". The Journal of Clinical Dentistry. 6: 37–40. ISSN 0895-8831. PMID 8593191.
  19. West, Nicola X.; He, Tao; Zou, Yuanshu; DiGennaro, Joe; Biesbrock, Aaron; Davies, Maria (February 2021). "Bioavailable gluconate chelated stannous fluoride toothpaste meta-analyses: Effects on dentine hypersensitivity and enamel erosion". Journal of Dentistry. 105: 103566. doi:10.1016/j.jdent.2020.103566. hdl:1983/34d78138-703d-484f-864f-ece3d3610d64. ISSN 1879-176X. PMID 33383100. S2CID 229940161.
  20. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  21. Séby, F.; Potin-Gautier, M.; Giffaut, E.; Donard, O.F.X. (2001). "A critical review of thermodynamic data for inorganic tin species". Geochimica et Cosmochimica Acta. 65 (18): 3041–3053. Bibcode:2001GeCoA..65.3041S. doi:10.1016/S0016-7037(01)00645-7.
  22. David B. Troy, 2005, Remington: The Science and Practice of Pharmacy, Lippincott Williams & Wilkins, ISBN 0-7817-4673-6, ISBN 978-0-7817-4673-1
  23. Denes, Georges; Lazanas, George (1994). "Oxidation of SnF2 stannous fluoride in aqueous solutions". Hyperfine Interactions. 90 (1): 435–439. Bibcode:1994HyInt..90..435D. doi:10.1007/BF02069152. S2CID 96184099.
  24. Hsu, C. C. & Geanangel, R. A. (1977). "Synthesis and studies of trimethylamine adducts with tin(II) halides". Inorg. Chem. 16 (1): 2529–2534. doi:10.1021/ic50176a022.
  25. Hsu, Chung Chun & Geanangel, R. A. (1980). "Donor and acceptor behavior of divalent tin compounds". Inorg. Chem. 19 (1): 110–119. doi:10.1021/ic50203a024.
  26. ^ Egon Wiberg, Arnold Frederick Holleman (2001) Inorganic Chemistry, Elsevier ISBN 0-12-352651-5.
  27. Salami, Tolulope O.; Zavalij, Peter Y.; Oliver, Scott R.J (2004). "Synthesis and crystal structure of two tin fluoride materials: NaSnF3 (BING-12) and Sn3F3PO4". Journal of Solid State Chemistry. 177 (3): 800–805. Bibcode:2004JSSCh.177..800S. doi:10.1016/j.jssc.2003.09.013.
  28. Kokunov Y. V.; Detkov D. G.; Gorbunova Yu. E.; Ershova M. M.; Mikhailov Yu. N. (2001). "Synthesis and Crystal Structure of Calcium Trifluorostannate(II)". Doklady Chemistry. 376 (4–6): 52–54. doi:10.1023/A:1018855109716. S2CID 91430538.
  29. Housecroft, C. E.; Sharpe, A. G. (2004). Inorganic Chemistry (2nd ed.). Prentice Hall. ISBN 978-0-13-039913-7.
  30. ^ Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN 0-19-855370-6
  31. Bogdanov, SE; Faustov, VI; Egorov, MP; Nefedov, OM (1994). "Matrix IR spectra and quantum chemical studies of the reaction between difluorostannylene and hept-1-yne. The first direct observation of a carbene analog π-complex with alkyne". Russian Chemical Bulletin. 43 (1): 47–49. doi:10.1007/BF00699133. S2CID 97064510.
  32. S. E. Boganov, M. P. Egorov and O. M. Nefedov (1999). "Study of complexation between difluorostannylene and aromatics by matrix IR spectroscopy". Russian Chemical Bulletin. 48 (1): 98–103. doi:10.1007/BF02494408. S2CID 94004320.
  33. "Stannous fluoride (International Chemical Safety Cards: 0860)". International Labour Organization. Retrieved June 21, 2021.
  34. "Stannous Fluoride-Dental". WebMD. Retrieved March 11, 2014.
Tin compounds
Sn(II)
Sn(IV)
Stomatological preparations (A01)
Caries prophylaxis
Infection and antiseptics
Corticosteroids
(Glucocorticoids)
Other
Fluorine compounds
Salts and covalent derivatives of the fluoride ion
HF ?HeF2
LiF BeF2 BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2 Ne
NaF MgF2 AlF
AlF3
SiF4 P2F4
PF3
PF5
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KF CaF
CaF2
ScF3 TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2 GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbF SrF
SrF2
YF3 ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2 InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsF BaF2   LuF3 HfF4 TaF5 WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
?PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrF RaF2   LrF3 Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
LaF3 CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3 SmF
SmF2
SmF3
EuF2
EuF3
GdF3 TbF3
TbF4
DyF2
DyF3
DyF4
HoF3 ErF3 TmF2
TmF3
YbF2
YbF3
AcF3 ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
Fm Md No
PF−6, AsF−6, SbF−6 compounds
AlF2−5, AlF3−6 compounds
chlorides, bromides, iodides
and pseudohalogenides
SiF2−6, GeF2−6 compounds
Oxyfluorides
Organofluorides
with transition metal,
lanthanide, actinide, ammonium
nitric acids
bifluorides
thionyl, phosphoryl,
and iodosyl
Chemical formulas
Categories:
Tin(II) fluoride: Difference between revisions Add topic