Revision as of 21:59, 12 November 2011 editCheMoBot (talk | contribs)Bots141,565 edits Updating {{drugbox}} (changes to verified fields - updated 'ChemSpiderID_Ref', 'ChEMBL_Ref', 'ChEBI_Ref', 'KEGG_Ref', 'StdInChI_Ref', 'StdInChIKey_Ref') per Chem/Drugbox validation (report [[Misplaced Pages talk:WikiProject_Pharmacology...← Previous edit | Latest revision as of 07:34, 10 August 2024 edit undoWhywhenwhohow (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers49,333 editsm script-assisted date audit and style fixes per MOS:NUM | ||
(209 intermediate revisions by 76 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Isotope of radium}} | |||
{{Drugbox | |||
{{Use dmy dates|date=August 2024}} | |||
{{cs1 config |name-list-style=vanc |display-authors=6}} | |||
{{Infobox isotope | |||
| alternate_names = actinium X, AcX | |||
| symbol = Ra | |||
| mass_number = 223 | |||
| mass = 223.0185007(22) | |||
| num_neutrons = 135 | |||
| num_protons = 88 | |||
| abundance = | |||
| halflife = {{val|11.43|0.05|u=days}} | |||
| image = | |||
| image_caption = image caption | |||
| decay_product = radon-219 | |||
| decay_symbol = <sup>219</sup>Rn | |||
| decay_mass = | |||
| decay_mode1 = α | |||
| decay_energy1 = 5.979{{AME2016 II|ref|name-list-style = vanc }} | |||
| decay_mode2 = | |||
| decay_energy2 = | |||
| decay_mode3 = | |||
| decay_energy3 = | |||
| decay_mode4 = | |||
| decay_energy4 = | |||
| parent = thorium-227 | |||
| parent_symbol = <sup>227</sup>Th | |||
| parent_mass = | |||
| parent_decay = | |||
| parent2 = francium-223 | |||
| parent2_symbol = <sup>223</sup>Fr | |||
| parent2_mass = | |||
| parent2_decay = | |||
| spin = | |||
| excess_energy = | |||
| binding_energy = | |||
}} | |||
'''Radium-223 ''' (<sup>223</sup>Ra, Ra-223) is an ] of ] with an 11.4-day ]. It was discovered in 1905 by T. Godlewski,<ref name="Godlewski_1905a">{{cite journal| vauthors = Godlewski T |title=A new radio-active product from actinium |journal=Nature |volume=71 |issue=1839 |year=1905 |pages=294–295 |issn=0028-0836 |doi=10.1038/071294b0|bibcode=1905Natur..71..294G|s2cid=4047285 |url=https://zenodo.org/record/2115992}}</ref><ref name="Godlewski_1905b">{{cite journal| vauthors = Godlewski T |title=V. Actinium and its successive products|journal=The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science|volume=10|issue=55|year=1905|pages=35–45|issn=1941-5982|doi=10.1080/14786440509463342|url=https://zenodo.org/record/2216022}}</ref><ref name="Hahn1906">{{cite journal| vauthors = Hahn O |title=A new product of actinium|journal=Nature|volume=73|issue=1902|year=1906|pages=559–560|issn=0028-0836|doi=10.1038/073559b0|bibcode=1906Natur..73..559H|s2cid=4052127 |url=https://zenodo.org/record/1705916}}</ref> a Polish chemist from ], and was historically known as ] (AcX).<ref name="Kirby_1971">{{cite journal | vauthors = Kirby HW |title=The discovery of actinium |year=1971 |journal=Isis |volume=62 |issue=3 |pages=290–308 |doi =10.1086/350760 |jstor=229943 |s2cid=144651011 }}</ref><ref name="FryThoennessen2013">{{cite journal| vauthors = Fry C, Thoennessen M |title=Discovery of actinium, thorium, protactinium, and uranium isotopes|journal=Atomic Data and Nuclear Data Tables|volume=99|issue=3|year=2013|pages=345–364|issn=0092-640X|doi=10.1016/j.adt.2012.03.002|bibcode=2013ADNDT..99..345F|arxiv=1203.1194|s2cid=97142872}}</ref> Radium-223 dichloride is an alpha particle-emitting radiotherapy drug that mimics calcium and forms complexes with hydroxyapatite at areas of increased bone turnover.<ref>{{Cite book|title=Medical-Surgical Nursing: Assessment and Management of Clinical Problems | edition = 10th | vauthors = Lewis SL, Bucher L, Heitkemper M, Harding MM |publisher=Elsevier|year=2017|isbn=978-0-323-32852-4}}</ref> The principal use of radium-223, as a ] to treat ] cancers in ], takes advantage of its chemical similarity to ], and the short range of the ] it emits.<ref name="Marques_2018">{{cite journal | vauthors = Marques IA, Neves AR, Abrantes AM, Pires AS, Tavares-da-Silva E, Figueiredo A, Botelho MF | title = Targeted alpha therapy using Radium-223: From physics to biological effects | journal = Cancer Treatment Reviews | volume = 68 | pages = 47–54 | date = July 2018 | pmid = 29859504 | doi = 10.1016/j.ctrv.2018.05.011 | s2cid = 44144271 }}</ref> | |||
==Origin and preparation== | |||
Although radium-223 is naturally formed in trace amounts by the ], it is generally made artificially,<ref name="Revisited">Bruland O.S., Larsen R.H. (2003). Radium revisited. In: Bruland O.S., Flgstad T., editors. Targeted cancer therapies: An odyssey. University Library of Tromso, Ravnetrykk No. 29. {{ISBN|82-91378-32-0}}, pp. 195–202. {{Webarchive|url=https://web.archive.org/web/20160421060024/http://www.bruland.info/PDF/195-202.pdf |date=21 April 2016 }}</ref> by exposing natural radium-226 to ]s to produce radium-227, which decays with a 42-minute half-life to ]. Actinium-227 (half-life 21.8 years) in turn decays via ] (half-life 18.7 days) to radium-223. This decay path makes it convenient to prepare radium-223 by "milking" it from an actinium-227 containing generator or "cow", similar to the ] widely used to prepare the medically important isotope ].<ref name="Revisited" /> | |||
<sup>223</sup>Ra itself ] to ] (half-life 3.96 s), a short-lived gaseous ] isotope, by emitting an ] of 5.979 ].{{AME2016 II|ref|name-list-style = vanc}} | |||
==Medical uses== | |||
{{Infobox drug | |||
| drug_name = Radium-223 chloride | |||
| Verifiedfields = changed | | Verifiedfields = changed | ||
| Watchedfields = changed | |||
| verifiedrevid = 458777866 | |||
| verifiedrevid = 477348686 | |||
| name = Alpharadin | |||
| |
| image = | ||
| |
| alt = | ||
| |
| caption = | ||
| caption = | |||
<!--Clinical data--> | <!-- Clinical data --> | ||
| tradename = | | tradename = Xofigo | ||
| Drugs.com = | | Drugs.com = {{Drugs.com|cons|xofigo}} | ||
| MedlinePlus = |
| MedlinePlus = | ||
| DailyMedID = Xofigo | |||
| pregnancy_AU = <!-- A / B1 / B2 / B3 / C / D / X --> | | pregnancy_AU = <!-- A / B1 / B2 / B3 / C / D / X --> | ||
| pregnancy_category= | |||
| pregnancy_US = <!-- A / B / C / D / X --> | |||
| routes_of_administration = ] | |||
| pregnancy_category= | |||
| ATC_prefix = V10 | |||
| legal_AU = <!-- S2, S3, S4, S5, S6, S7, S8, S9 or Unscheduled--> | |||
| ATC_suffix = XX03 | |||
| legal_AU = S4 | |||
| legal_AU_comment = <ref>{{cite web | title=Prescription medicines: registration of new chemical entities in Australia, 2014 | website=Therapeutic Goods Administration (TGA) | date=21 June 2022 | url=https://www.tga.gov.au/resources/resource/guidance/prescription-medicines-registration-new-chemical-entities-australia-2014 | access-date=10 April 2023}}</ref> | |||
| legal_CA = <!-- OTC, Rx-only, Schedule I, II, III, IV, V, VI, VII, VIII --> | | legal_CA = <!-- OTC, Rx-only, Schedule I, II, III, IV, V, VI, VII, VIII --> | ||
| legal_UK = <!-- GSL, P, POM, CD, CD Lic, CD POM, CD No Reg POM, CD (Benz) POM, CD (Anab) POM or CD Inv POM --> | | legal_UK = <!-- GSL, P, POM, CD, CD Lic, CD POM, CD No Reg POM, CD (Benz) POM, CD (Anab) POM or CD Inv POM --> | ||
| legal_US = |
| legal_US = Rx-only | ||
| legal_US_comment = <ref name="Xofigo FDA label">{{cite web | title=Xofigo- radium ra 223 dichloride injection | website=DailyMed | date=10 December 2019 | url=https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=a398400e-bd31-41a9-9696-4f7c06569ede | access-date=10 August 2024}}</ref> | |||
| legal_status = Experimental | |||
| legal_EU = Rx-only | |||
| routes_of_administration = | |||
| legal_EU_comment = <ref name="Xofigo EPAR">{{cite web | title=Xofigo EPAR | website=European Medicines Agency (EMA) | date=13 November 2013 | url=https://www.ema.europa.eu/en/medicines/human/EPAR/xofigo | access-date=10 August 2024}}</ref> | |||
| legal_status = | |||
<!--Pharmacokinetic data--> | <!-- Pharmacokinetic data --> | ||
| bioavailability = |
| bioavailability = | ||
| protein_bound = |
| protein_bound = | ||
| metabolism = |
| metabolism = | ||
| elimination_half-life = |
| elimination_half-life = | ||
| excretion = |
| excretion = | ||
<!--Identifiers--> | <!-- Identifiers --> | ||
| CAS_number_Ref = {{cascite|changed|??}} | | CAS_number_Ref = {{cascite|changed|??}} | ||
| CAS_number = 444811-40-9 | | CAS_number = 444811-40-9 | ||
| |
| PubChem = 6335825 | ||
| ChEBI = 74895 | |||
| ATC_prefix = <!-- 'none' if uncategorised --> | |||
| DrugBank_Ref = {{drugbankcite|correct|drugbank}} | |||
| ATC_suffix = | |||
| DrugBank = | |||
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} | |||
| ChemSpiderID = none | |||
| UNII_Ref = {{fdacite|correct|FDA}} | | UNII_Ref = {{fdacite|correct|FDA}} | ||
| UNII = RJ00KV3VTG | | UNII = RJ00KV3VTG | ||
| KEGG = D10398 | |||
| PubChem = | |||
| DrugBank_Ref = {{drugbankcite|correct|drugbank}} | |||
| DrugBank = | |||
| ChemSpiderID_Ref = {{chemspidercite|changed|chemspider}} | |||
| ChemSpiderID = NA | |||
<!--Chemical data--> | <!-- Chemical data --> | ||
| IUPAC_name = Radium-223 chloride | |||
| chemical_formula = <sup>223</sup>RaCl<sub>2</sub> | | chemical_formula = <sup>223</sup>RaCl<sub>2</sub> | ||
| molecular_weight = 296.91 |
| molecular_weight = 296.91 | ||
| molecular_weight_comment = g/mol | |||
}} | }} | ||
The pharmaceutical product and medical use of radium-223 against skeletal metastases was invented by Roy H. Larsen, Gjermund Henriksen and Øyvind S. Bruland<ref>"Preparation and use of radium-223 to target calcified tissues for pain palliation, bone cancer therapy, and bone surface conditioning" US 6635234</ref> and has been developed by the former Norwegian company ] ASA, in a partnership with ], under the trade name '''Xofigo''' (formerly '''Alpharadin'''), and is distributed as a solution containing radium-223 chloride (1100 kBq/ml), sodium chloride, and other ingredients for intravenous injection. Algeta ASA was later acquired by Bayer who is the sole owner of Xofigo.<ref name="Xofigo EPAR" /><ref name="XofigoSPC">{{cite web |title=Xofigo Summary of Product Characteristics |url=https://www.ema.europa.eu/en/documents/product-information/xofigo-epar-product-information_en.pdf |website=European Medicines Authority |publisher=Bayer |access-date=9 October 2019 |date=11 October 2018}}</ref> | |||
'''Alpharadin''' (radium-223 chloride) is an experimental ] under clinical evaluation to improve survival in patients with bone metastases from advanced cancer. It is being developed by the Norwegian company Algeta ASA, in a partnership with ]. Phase III clinical trials showed a 2.8 months increase in median overall survival due to the drug as compared to placebo (the increase was from 11.2 months to 14.0 months). | |||
== Mechanism of action == | === Mechanism of action === | ||
{{see also|Targeted alpha-particle therapy}} | |||
The use of radium-223 to treat metastatic bone cancer relies on the ability of ] from radium-223 and its short-lived decay products to kill cancer cells. Radium is preferentially absorbed by bone by virtue of its chemical similarity to calcium, with most radium-223 that is not taken up by the bone being cleared, primarily via the gut, and excreted.<ref>{{cite journal | vauthors = Nilsson S, Larsen RH, Fosså SD, Balteskard L, Borch KW, Westlin JE, Salberg G, Bruland OS | display-authors = 6 | title = First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases | journal = Clinical Cancer Research | volume = 11 | issue = 12 | pages = 4451–9 | date = June 2005 | pmid = 15958630 | doi = 10.1158/1078-0432.CCR-04-2244 | s2cid = 72948306 | doi-access = }}</ref> Although radium-223 and its decay products also emit ] and ], over 95% of the decay energy is in the form of alpha radiation.<ref>{{cite journal | vauthors = Bruland ØS, Nilsson S, Fisher DR, Larsen RH | title = High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities? | journal = Clinical Cancer Research | volume = 12 | issue = 20 Pt 2 | pages = 6250s–6257s | date = October 2006 | pmid = 17062709 | doi = 10.1158/1078-0432.CCR-06-0841 | doi-access = | s2cid = 21171264 }}</ref> Alpha radiation has a very short range in tissues compared to beta or gamma radiation: around 2–10 cells. This reduces damage to surrounding healthy tissues, producing an even more localized effect than the beta-emitter ], also used to treat bone cancer.<ref>{{cite journal | vauthors = Henriksen G, Fisher DR, Roeske JC, Bruland ØS, Larsen RH | title = Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice | journal = Journal of Nuclear Medicine | volume = 44 | issue = 2 | pages = 252–9 | date = February 2003 | pmid = 12571218 | url = http://jnm.snmjournals.org/cgi/pmidlookup?view=long&pmid=12571218 }}</ref> Taking account of its preferential uptake by bone and the alpha particles' short range, radium-223 is estimated to give targeted ] a radiation dose at least eight times higher than other non-targeted tissues.<ref name="Xofigo FDA label" /> | |||
=== Clinical trials and FDA and EMA approval === | |||
Alpharadin uses ] from ] decay to kill cancer cells. Radium-223 naturally self-targets to bone metastases by virtue of its properties as a calcium-mimic.<ref>http://hugin.info/134655/R/1460551/399678.pdf</ref> | |||
The phase II study of radium-223 in ] (CRPC) patients with ] showed minimum ] and good tolerance for the treatment.<ref name="Nilsson 2007">{{cite journal | vauthors = Nilsson S, Franzén L, Parker C, Tyrrell C, Blom R, Tennvall J, Lennernäs B, Petersson U, Johannessen DC, Sokal M, Pigott K, Yachnin J, Garkavij M, Strang P, Harmenberg J, Bolstad B, Bruland OS | display-authors = 6 | title = Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study | journal = The Lancet. Oncology | volume = 8 | issue = 7 | pages = 587–94 | date = July 2007 | pmid = 17544845 | doi = 10.1016/S1470-2045(07)70147-X }}</ref> | |||
<sup>223</sup>Ra successfully met the primary endpoint of ] in the ] ALSYMPCA (ALpharadin in SYMptomatic Prostate CAncer patients) study for bone metastases resulting from CRPC in 922 patients.<ref name=FR2011/> | |||
Alpha radiation has a very short range of 2-10 cells (when compared to current ] which is based on beta or gamma radiation), and therefore causes less damage to surrounding healthy tissues (particularly bone marrow). Radium-223 has a half life of 11.4 days, making it ideal for targeted cancer treatment. Furthermore, any Alpharadin that is not taken up by the bone metastases is rapidly cleared to the gut and excreted. | |||
The ALSYMPCA study was stopped early after a pre-planned efficacy interim analysis, following a recommendation from an Independent Data Monitoring Committee, on the basis of achieving a statistically significant improvement in overall survival (two-sided p-value = 0.0022, HR = 0.699, the median overall survival was 14.0 months for <sup>223</sup>Ra and 11.2 months for placebo).<ref name=FR2011></ref> Earlier phase II of the trial showed a median increased survival of 18.9 weeks (around 4.4 months).<ref name="Nilsson 2007" /> The lower figure of 2.8 months increased survival in interim phase III results is a probable result of stopping the trial; median survival time for patients still alive could not be calculated. A 2014 update indicates a median increased survival of 3.6 months.<ref name="Parker et al 2013">{{cite journal | vauthors = Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fosså SD, Chodacki A, Wichno P, Logue J, Seke M, Widmark A, Johannessen DC, Hoskin P, Bottomley D, James ND, Solberg A, Syndikus I, Kliment J, Wedel S, Boehmer S, Dall'Oglio M, Franzén L, Coleman R, Volgelzang NJ, O'Bryan-Tear CG, Staudacher K, Garcia-Vargas J, Shan M, Bruland ØS, Sartor O | display-authors = 6 | title = Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer | journal = New England Journal of Medicine | volume = 369 | issue = 3 | pages = 213–223 | date = 18 July 2013 | pmid = 23863050 | doi = 10.1056/NEJMoa1213755| doi-access = free }}</ref> | |||
== Trials == | |||
In May 2013, <sup>223</sup>Ra received marketing approval from the US ] (FDA)<ref name="FDA PR 20130515">{{cite press release |title=FDA approves new drug for advanced prostate cancer |publisher=U.S. ] (FDA) |url=https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm352363.htm |archive-url=https://web.archive.org/web/20130604012752/https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm352363.htm |archive-date=4 June 2013 |url-status=dead |access-date=16 December 2019 }} {{PD-notice}}</ref><ref>{{cite web | title=Drug Approval Package: Xofigo (radium Ra 223 dichloride) Injection NDA #203971 | website=U.S. ] (FDA) | date=21 June 2013 | url=https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/203971Orig1s000TOC.cfm | access-date=10 August 2024}}</ref> as a treatment for CRPC with bone metastases in people with symptomatic bone metastases and without known visceral disease. <sup>223</sup>Ra received priority review as a treatment for an unmet medical need, based on its ability to extend overall survival as shown its Phase III trial.<ref name="FDA PR 20130515" /> | |||
The phase II study of bone metastases in CRPC patients found no ] or other effects. | |||
This study also led to approval in the ] in November 2013,<ref name="Xofigo EPAR" /><ref>{{Cite web| url=http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002653/human_med_001692.jsp&mid=WC0b01ac058001d124| title=Xofigo| date=17 September 2018| access-date=3 September 2015| archive-date=19 August 2018| archive-url=https://web.archive.org/web/20180819182318/http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002653/human_med_001692.jsp&mid=WC0b01ac058001d124| url-status=dead}}</ref> The ] subsequently recommended restricting its use to patients who have had two previous treatments for metastatic prostate cancer or who cannot receive other treatments. The medicine must also not be used with ], prednisone or prednisolone and its use is not recommended in patients with a low number of osteoblastic bone metastases.<ref>{{Cite web|url=https://www.ema.europa.eu/en/medicines/human/referrals/xofigo|title=EMA restricts use of prostate cancer medicine Xofigo |date=28 September 2018|website=European Medicines Agency}}</ref> | |||
Alpharadin successfully met the primary endpoint of overall survival in the phase III ALSYMPCA (ALpharadin in SYMptomatic Prostate CAncer patients) study for bone metastases resulting from castration-resistant prostate cancer (CRPC) in 922 patients. | |||
<sup>223</sup>Ra also showed promising preliminary results in a phase IIa trial enrolling 23 women with bone metastases resulting from ] that no longer responds to ].<ref name="Coleman et al 2014">{{cite journal | vauthors = Coleman R, Aksnes AK, Naume B, Garcia C, Jerusalem G, Piccart M, Vobecky N, Thuresson M, Flamen P | display-authors = 6 | title = A phase IIa, nonrandomized study of radium-223 dichloride in advanced breast cancer patients with bone-dominant disease | journal = Breast Cancer Research and Treatment | volume = 145 | issue = 2 | pages = 411–418 | date = June 2014 | pmid = 24728613 | pmc = 4025174 | doi = 10.1007/s10549-014-2939-1 | doi-access = free }}</ref> <sup>223</sup>Ra treatment reduced the levels of bone ] (bALP) and urine ] (uNTX), key markers of bone turnover associated with bone metastases in breast cancer, diminished bone pain slightly though consistently, and was well tolerated. Another single-arm, open-label Phase II trial reported possible efficacy of <sup>223</sup>Ra combined with ] in hormone-receptor-positive, bone-dominant breast cancer metastasis.<ref name="Ueno et al 2020">{{cite journal | vauthors = Ueno NT, Tahara RK, Fujii T, Reuben JM, Gao H, Saigal B, Lucci A, Iwase T, Ibrahim NK, Damodaran S, Shen Y, Liu DD, Hortobagyi GN, Tripathy D, Lim B, Chasen BA | display-authors = 6 | title = Phase II study of Radium-223 dichloride combined with hormonal therapy for hormone receptor-positive, bone-dominant metastatic breast cancer | journal = Cancer Medicine | volume = 9 | issue = 3 | pages = 1025–1032 | date = February 2020 | pmid = 31849202 | pmc = 6997080 | doi = 10.1002/cam4.2780 | doi-access = free }}</ref> | |||
The ALSYMPCA study was stopped early after a pre-planned efficacy interim analysis, following a recommendation from an Independent Data Monitoring Committee, on the basis of achieving a statistically significant improvement in overall survival (two-sided p-value = 0.0022, HR = 0.699, the median overall survival was 14.0 months for Alpharadin and 11.2 months for placebo). Earlier Phase II of the trial showed 4.5 months increased survival. The lower figure of 2.8 months increased survival in phase III, is a probable result of stopping the trail. Survival time for the patients still alive could not be calculated. | |||
===Side effects=== | |||
Algeta and Bayer are preparing to file regulatory submissions in the U.S and Europe and will discuss pricing with the relevant authorities. | |||
The most common side effects reported during clinical trials in men receiving <sup>223</sup>Ra were nausea, diarrhea, vomiting and swelling of the leg, ankle or foot. The most common abnormalities detected during blood testing were ], ], ], ] and ].<ref name="FDA PR 20130515" /> | |||
Alpharadin also showed promising preliminary results in a phase IIa trial with bone metastases resulting from breast cancer that no longer responds to endocrine therapy. The data showed that Alpharadin reduced the levels of bone alkaline phosphatase (bALP) and urine N-telopeptide (uNTX), key markers of bone turnover associated with bone metastases in breast cancer. Alpharadin was also found to be safe and well tolerated. | |||
===Other radium-223-based compounds=== | |||
In clinical trials, Alpharadin was administered by intravenous injection once a month for 4 or 6 months. Alpharadin can be prepared and shipped for use anywhere around the world. | |||
Although radium does not easily form stable molecular complexes,<ref>{{cite journal | vauthors = Henriksen G, Hoff P, Larsen RH | title = Evaluation of potential chelating agents for radium | journal = Applied Radiation and Isotopes | volume = 56 | issue = 5 | pages = 667–71 | date = May 2002 | pmid = 11993940 | doi = 10.1016/s0969-8043(01)00282-2 | bibcode = 2002AppRI..56..667H }}</ref> data has been presented on methods to increase and customize its specificity for particular cancers by linking it to ], by enclosing the <sup>223</sup>Ra in ]s bearing the antibodies on their surface.<ref>{{cite journal | vauthors = Henriksen G, Schoultz BW, Michaelsen TE, Bruland ØS, Larsen RH | title = Sterically stabilized liposomes as a carrier for alpha-emitting radium and actinium radionuclides | journal = Nuclear Medicine and Biology | volume = 31 | issue = 4 | pages = 441–9 | date = May 2004 | pmid = 15093814 | doi = 10.1016/j.nucmedbio.2003.11.004 }}</ref> | |||
== References == | == References == | ||
{{reflist}} | {{reflist}} | ||
{{Therapeutic radiopharmaceuticals}} | |||
==External links== | |||
{{Portal bar | Medicine}} | |||
* | |||
{{Authority control}} | |||
* | |||
* | |||
* | |||
{{Use dmy dates|date=June 2011}} | |||
] | |||
] | ] | ||
] | ] | ||
] | ] | ||
] | |||
] | |||
] |
Latest revision as of 07:34, 10 August 2024
Isotope of radium
General | |
---|---|
Symbol | Ra |
Names | radium-223, 223Ra, Ra-223, actinium X, AcX |
Protons (Z) | 88 |
Neutrons (N) | 135 |
Nuclide data | |
Half-life (t1/2) | 11.43±0.05 d |
Isotope mass | 223.0185007(22) Da |
Parent isotopes | Th Fr |
Decay products | Rn |
Decay modes | |
Decay mode | Decay energy (MeV) |
α | 5.979 |
Isotopes of radium Complete table of nuclides |
Radium-223 (Ra, Ra-223) is an isotope of radium with an 11.4-day half-life. It was discovered in 1905 by T. Godlewski, a Polish chemist from Kraków, and was historically known as actinium X (AcX). Radium-223 dichloride is an alpha particle-emitting radiotherapy drug that mimics calcium and forms complexes with hydroxyapatite at areas of increased bone turnover. The principal use of radium-223, as a radiopharmaceutical to treat metastatic cancers in bone, takes advantage of its chemical similarity to calcium, and the short range of the alpha radiation it emits.
Origin and preparation
Although radium-223 is naturally formed in trace amounts by the decay of uranium-235, it is generally made artificially, by exposing natural radium-226 to neutrons to produce radium-227, which decays with a 42-minute half-life to actinium-227. Actinium-227 (half-life 21.8 years) in turn decays via thorium-227 (half-life 18.7 days) to radium-223. This decay path makes it convenient to prepare radium-223 by "milking" it from an actinium-227 containing generator or "cow", similar to the moly cows widely used to prepare the medically important isotope technetium-99m.
Ra itself decays to Rn (half-life 3.96 s), a short-lived gaseous radon isotope, by emitting an alpha particle of 5.979 MeV.
Medical uses
Pharmaceutical compoundClinical data | |
---|---|
Trade names | Xofigo |
AHFS/Drugs.com | Micromedex Detailed Consumer Information |
License data | |
Routes of administration | Intravenous |
ATC code | |
Legal status | |
Legal status | |
Identifiers | |
IUPAC name
| |
CAS Number | |
PubChem CID | |
ChemSpider |
|
UNII | |
KEGG | |
ChEBI | |
CompTox Dashboard (EPA) | |
Chemical and physical data | |
Formula | RaCl2 |
Molar mass | 296.91 g/mol |
(what is this?) (verify) |
The pharmaceutical product and medical use of radium-223 against skeletal metastases was invented by Roy H. Larsen, Gjermund Henriksen and Øyvind S. Bruland and has been developed by the former Norwegian company Algeta ASA, in a partnership with Bayer, under the trade name Xofigo (formerly Alpharadin), and is distributed as a solution containing radium-223 chloride (1100 kBq/ml), sodium chloride, and other ingredients for intravenous injection. Algeta ASA was later acquired by Bayer who is the sole owner of Xofigo.
Mechanism of action
See also: Targeted alpha-particle therapyThe use of radium-223 to treat metastatic bone cancer relies on the ability of alpha radiation from radium-223 and its short-lived decay products to kill cancer cells. Radium is preferentially absorbed by bone by virtue of its chemical similarity to calcium, with most radium-223 that is not taken up by the bone being cleared, primarily via the gut, and excreted. Although radium-223 and its decay products also emit beta and gamma radiation, over 95% of the decay energy is in the form of alpha radiation. Alpha radiation has a very short range in tissues compared to beta or gamma radiation: around 2–10 cells. This reduces damage to surrounding healthy tissues, producing an even more localized effect than the beta-emitter strontium-89, also used to treat bone cancer. Taking account of its preferential uptake by bone and the alpha particles' short range, radium-223 is estimated to give targeted osteogenic cells a radiation dose at least eight times higher than other non-targeted tissues.
Clinical trials and FDA and EMA approval
The phase II study of radium-223 in castration-resistant prostate cancer (CRPC) patients with bone metastases showed minimum myelotoxicity and good tolerance for the treatment.
Ra successfully met the primary endpoint of overall survival in the phase III ALSYMPCA (ALpharadin in SYMptomatic Prostate CAncer patients) study for bone metastases resulting from CRPC in 922 patients.
The ALSYMPCA study was stopped early after a pre-planned efficacy interim analysis, following a recommendation from an Independent Data Monitoring Committee, on the basis of achieving a statistically significant improvement in overall survival (two-sided p-value = 0.0022, HR = 0.699, the median overall survival was 14.0 months for Ra and 11.2 months for placebo). Earlier phase II of the trial showed a median increased survival of 18.9 weeks (around 4.4 months). The lower figure of 2.8 months increased survival in interim phase III results is a probable result of stopping the trial; median survival time for patients still alive could not be calculated. A 2014 update indicates a median increased survival of 3.6 months.
In May 2013, Ra received marketing approval from the US Food and Drug Administration (FDA) as a treatment for CRPC with bone metastases in people with symptomatic bone metastases and without known visceral disease. Ra received priority review as a treatment for an unmet medical need, based on its ability to extend overall survival as shown its Phase III trial.
This study also led to approval in the European Union in November 2013, The European Medicines Agency subsequently recommended restricting its use to patients who have had two previous treatments for metastatic prostate cancer or who cannot receive other treatments. The medicine must also not be used with abiraterone acetate, prednisone or prednisolone and its use is not recommended in patients with a low number of osteoblastic bone metastases.
Ra also showed promising preliminary results in a phase IIa trial enrolling 23 women with bone metastases resulting from breast cancer that no longer responds to endocrine therapy. Ra treatment reduced the levels of bone alkaline phosphatase (bALP) and urine N-telopeptide (uNTX), key markers of bone turnover associated with bone metastases in breast cancer, diminished bone pain slightly though consistently, and was well tolerated. Another single-arm, open-label Phase II trial reported possible efficacy of Ra combined with endocrine therapy in hormone-receptor-positive, bone-dominant breast cancer metastasis.
Side effects
The most common side effects reported during clinical trials in men receiving Ra were nausea, diarrhea, vomiting and swelling of the leg, ankle or foot. The most common abnormalities detected during blood testing were anemia, lymphocytopenia, leukopenia, thrombocytopenia and neutropenia.
Other radium-223-based compounds
Although radium does not easily form stable molecular complexes, data has been presented on methods to increase and customize its specificity for particular cancers by linking it to monoclonal antibodies, by enclosing the Ra in liposomes bearing the antibodies on their surface.
References
- ^ Wang M, Audi G, Kondev FG, Huang WJ, Naimi S, Xu X (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1 – 030003-442. doi:10.1088/1674-1137/41/3/030003.
{{cite journal}}
: CS1 maint: overridden setting (link) - Godlewski T (1905). "A new radio-active product from actinium". Nature. 71 (1839): 294–295. Bibcode:1905Natur..71..294G. doi:10.1038/071294b0. ISSN 0028-0836. S2CID 4047285.
- Godlewski T (1905). "V. Actinium and its successive products". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 10 (55): 35–45. doi:10.1080/14786440509463342. ISSN 1941-5982.
- Hahn O (1906). "A new product of actinium". Nature. 73 (1902): 559–560. Bibcode:1906Natur..73..559H. doi:10.1038/073559b0. ISSN 0028-0836. S2CID 4052127.
- Kirby HW (1971). "The discovery of actinium". Isis. 62 (3): 290–308. doi:10.1086/350760. JSTOR 229943. S2CID 144651011.
- Fry C, Thoennessen M (2013). "Discovery of actinium, thorium, protactinium, and uranium isotopes". Atomic Data and Nuclear Data Tables. 99 (3): 345–364. arXiv:1203.1194. Bibcode:2013ADNDT..99..345F. doi:10.1016/j.adt.2012.03.002. ISSN 0092-640X. S2CID 97142872.
- Lewis SL, Bucher L, Heitkemper M, Harding MM (2017). Medical-Surgical Nursing: Assessment and Management of Clinical Problems (10th ed.). Elsevier. ISBN 978-0-323-32852-4.
- Marques IA, Neves AR, Abrantes AM, Pires AS, Tavares-da-Silva E, Figueiredo A, et al. (July 2018). "Targeted alpha therapy using Radium-223: From physics to biological effects". Cancer Treatment Reviews. 68: 47–54. doi:10.1016/j.ctrv.2018.05.011. PMID 29859504. S2CID 44144271.
- ^ Bruland O.S., Larsen R.H. (2003). Radium revisited. In: Bruland O.S., Flgstad T., editors. Targeted cancer therapies: An odyssey. University Library of Tromso, Ravnetrykk No. 29. ISBN 82-91378-32-0, pp. 195–202. Archived 21 April 2016 at the Wayback Machine
- "Prescription medicines: registration of new chemical entities in Australia, 2014". Therapeutic Goods Administration (TGA). 21 June 2022. Retrieved 10 April 2023.
- ^ "Xofigo- radium ra 223 dichloride injection". DailyMed. 10 December 2019. Retrieved 10 August 2024.
- ^ "Xofigo EPAR". European Medicines Agency (EMA). 13 November 2013. Retrieved 10 August 2024.
- "Preparation and use of radium-223 to target calcified tissues for pain palliation, bone cancer therapy, and bone surface conditioning" US 6635234
- "Xofigo Summary of Product Characteristics" (PDF). European Medicines Authority. Bayer. 11 October 2018. Retrieved 9 October 2019.
- Nilsson S, Larsen RH, Fosså SD, Balteskard L, Borch KW, Westlin JE, et al. (June 2005). "First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases". Clinical Cancer Research. 11 (12): 4451–9. doi:10.1158/1078-0432.CCR-04-2244. PMID 15958630. S2CID 72948306.
{{cite journal}}
: CS1 maint: overridden setting (link) - Bruland ØS, Nilsson S, Fisher DR, Larsen RH (October 2006). "High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities?". Clinical Cancer Research. 12 (20 Pt 2): 6250s – 6257s. doi:10.1158/1078-0432.CCR-06-0841. PMID 17062709. S2CID 21171264.
- Henriksen G, Fisher DR, Roeske JC, Bruland ØS, Larsen RH (February 2003). "Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice". Journal of Nuclear Medicine. 44 (2): 252–9. PMID 12571218.
- ^ Nilsson S, Franzén L, Parker C, Tyrrell C, Blom R, Tennvall J, et al. (July 2007). "Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study". The Lancet. Oncology. 8 (7): 587–94. doi:10.1016/S1470-2045(07)70147-X. PMID 17544845.
{{cite journal}}
: CS1 maint: overridden setting (link) - ^ Full data report from the ALSYMPCA trial of radium-223 presented
- Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fosså SD, et al. (18 July 2013). "Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer". New England Journal of Medicine. 369 (3): 213–223. doi:10.1056/NEJMoa1213755. PMID 23863050.
{{cite journal}}
: CS1 maint: overridden setting (link) - ^ "FDA approves new drug for advanced prostate cancer" (Press release). U.S. Food and Drug Administration (FDA). Archived from the original on 4 June 2013. Retrieved 16 December 2019. This article incorporates text from this source, which is in the public domain.
- "Drug Approval Package: Xofigo (radium Ra 223 dichloride) Injection NDA #203971". U.S. Food and Drug Administration (FDA). 21 June 2013. Retrieved 10 August 2024.
- "Xofigo". 17 September 2018. Archived from the original on 19 August 2018. Retrieved 3 September 2015.
- "EMA restricts use of prostate cancer medicine Xofigo". European Medicines Agency. 28 September 2018.
- Coleman R, Aksnes AK, Naume B, Garcia C, Jerusalem G, Piccart M, et al. (June 2014). "A phase IIa, nonrandomized study of radium-223 dichloride in advanced breast cancer patients with bone-dominant disease". Breast Cancer Research and Treatment. 145 (2): 411–418. doi:10.1007/s10549-014-2939-1. PMC 4025174. PMID 24728613.
{{cite journal}}
: CS1 maint: overridden setting (link) - Ueno NT, Tahara RK, Fujii T, Reuben JM, Gao H, Saigal B, et al. (February 2020). "Phase II study of Radium-223 dichloride combined with hormonal therapy for hormone receptor-positive, bone-dominant metastatic breast cancer". Cancer Medicine. 9 (3): 1025–1032. doi:10.1002/cam4.2780. PMC 6997080. PMID 31849202.
{{cite journal}}
: CS1 maint: overridden setting (link) - Henriksen G, Hoff P, Larsen RH (May 2002). "Evaluation of potential chelating agents for radium". Applied Radiation and Isotopes. 56 (5): 667–71. Bibcode:2002AppRI..56..667H. doi:10.1016/s0969-8043(01)00282-2. PMID 11993940.
- Henriksen G, Schoultz BW, Michaelsen TE, Bruland ØS, Larsen RH (May 2004). "Sterically stabilized liposomes as a carrier for alpha-emitting radium and actinium radionuclides". Nuclear Medicine and Biology. 31 (4): 441–9. doi:10.1016/j.nucmedbio.2003.11.004. PMID 15093814.
Therapeutic radiopharmaceuticals (V10) | |||||
---|---|---|---|---|---|
Pain palliation | |||||
Adrenergic tumors | |||||
CD20 antibodies | |||||
Radionuclides |
| ||||
Isotopes used:
|