Misplaced Pages

Magnesium nitride: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 16:19, 6 December 2011 edit217.158.134.98 (talk) Synthesis← Previous edit Latest revision as of 15:59, 5 December 2024 edit undo5.178.188.143 (talk) PreparationTag: Visual edit 
(115 intermediate revisions by 66 users not shown)
Line 1: Line 1:
{{chembox {{chembox
| verifiedrevid = 403294454 | verifiedrevid = 420366204
| Name = Magnesium nitride | Name = Magnesium nitride
| ImageFile = | ImageFile = Magnesium nitride.jpg
| ImageName = Magnesium nitride
<!-- | ImageSize = 200px -->
| ImageFile1 = File:Mg3P2.png
| ImageName =
| IUPACName = Magnesium nitride | ImageName1 = structure of magnesium nitride
| IUPACName = Magnesium nitride
| OtherNames =
| OtherNames = trimagnesium dinitride
| Section1 = {{Chembox Identifiers
|Section1={{Chembox Identifiers
| SMILES =
| SMILES = ....
| CASNo = 12057-71-5
| InChI = InChI=1S/3Mg.2N
| PubChem = 16212682
| InChI2 = InChI=1S/3Mg.2N/q3*+2;2*-3
| RTECS =
| InChI3 = InChI=1S/3Mg.2N/q;;+2;2*-1
}}
| CASNo_Ref = {{cascite|correct|??}}
| Section2 = {{Chembox Properties
| CASNo = 12057-71-5
| Formula = Mg<sub>3</sub>N<sub>2</sub>
| EINECS = 235-022-1
| MolarMass = 100.9494 g/mol
| UNII_Ref = {{fdacite|correct|FDA}}
| Appearance = greenish yellow powder
| UNII = 7941Y31SR6
| Density = 2.712 g/cm<sup>3</sup>
| PubChem = 3673438
| Solubility =
| RTECS =
| MeltingPt = approx. 1500°C
}}
| BoilingPt =
|Section2={{Chembox Properties
| pKa =
| Formula = {{chem2|Mg3N2}}
| pKb =
| MolarMass = 100.9494 g/mol
| Viscosity =
| Appearance = greenish yellow powder
}}
| Density = 2.712 g/cm<sup>3</sup>
| Section3 = {{Chembox Structure
| MolShape = | Solubility =
| MeltingPt = approx. 1500°C
| Coordination =
| CrystalStruct = | BoilingPt =
| Dipole = | pKa =
}} | pKb =
| Viscosity =
| Section7 = {{Chembox Hazards
}}
| ExternalMSDS =
|Section3={{Chembox Structure
| MainHazards =
| FlashPt = | MolShape =
| Coordination =
| RPhrases = {{R36}}, {{R37}}, {{R38}}
| CrystalStruct =
| SPhrases = {{S26}}, {{S36}}
| Dipole =
}}
}}
| Section8 = {{Chembox Related
|Section7={{Chembox Hazards
| OtherAnions =
| ExternalSDS =
| OtherCations =
| OtherCpds = | MainHazards =
| FlashPt =
}}
| Hazards_ref=<ref>{{cite web |title=Summary of Classification and Labelling |url=https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/68017 |access-date=4 December 2021}}</ref>
| GHSPictograms = {{GHS02}}{{GHS07}}
| GHSSignalWord = Danger
| HPhrases = {{H-phrases|228|315|319|335}}
| PPhrases = {{P-phrases|210|261|280|305+351+338|405|501}}
}}
|Section8={{Chembox Related
| OtherAnions =
| OtherCations = {{ubl|]|]|]}}
| OtherCompounds =
}}
}} }}


'''Magnesium nitride''', which has the ] Mg<sub>3</sub>N<sub>2</sub>, is an ] of ] and ]. At room temperature and pressure it is a greenish yellow powder. '''Magnesium nitride''', which possesses the ] {{chem2|Mg3N2|auto=1}}, is an ] of ] and ]. At room temperature and pressure it is a greenish yellow powder.

== History ==
When measuring the boiling point of magnesium, ] and Henri Caron identified that molten magnesium they distilled covered itself by "small colorless and transparent needles which are destroyed fairly quickly by transforming into ammonia and magnesia". In their 1857 publication the chemists interpreted it as a likely nitride similar to those discovered by ] and ].<ref>]</ref>

It was indeed confirmed in 1862 when Friedrich Briegleb and ] synthesized the compound on purpose and first studied it.<ref>{{Cite journal |last=Briegleb |first=Fr. |last2=Geuther |first2=A. |date=1862 |title=Ueber das Stickstoffmagnesium und die Affinitäten des Stickgases zu Metallen |url=https://books.google.com/books?id=netSAAAAcAAJ&pg=PA228 |journal=Justus Liebigs Annalen der Chemie |language=de |volume=123 |issue=2 |pages=228–241 |doi=10.1002/jlac.18621230212 |issn=1099-0690}}</ref>

== Preparation ==

* By passing dry nitrogen over heated magnesium at 800 °C:
:{{chem2|3 Mg + N2 → Mg3N2}}

* or ammonia at 700 °C:
:{{chem2|3 Mg + 2 NH3 → Mg3N2 + 3 H2}}


==Chemistry== ==Chemistry==
Magnesium nitride reacts with water to produce ] gas, as do many metal ]s. Magnesium nitride reacts with water to produce ] and ] gas, as do many metal ]s.


:Mg<sub>3</sub>N<sub>2</sub> + 6 H<sub>2</sub>O → 3 Mg(OH)<sub>2</sub> + 2 NH<sub>3</sub> :{{chem2|Mg3N2(s) + 6 H2O(l) → 3 Mg(OH)2(aq) + 2 NH3(g)}}


In fact, when magnesium is burned in air, some magnesium nitride is formed in addition to the principal product, ].
==Synthesis==


Thermal decomposition of magnesium nitride gives magnesium and nitrogen gas (at 700-1500&nbsp;°C).


At high pressures, the stability and formation of new nitrogen-rich nitrides (N/Mg ratio equal or greater to one) were suggested and later discovered.<ref>{{Cite journal|last1=Yu|first1=Shuyin|last2=Huang|first2=Bowen|last3=Zeng|first3=Qingfeng|last4=Oganov|first4=Artem R.|last5=Zhang|first5=Litong|last6=Frapper|first6=Gilles|date=June 2017|title=Emergence of Novel Polynitrogen Molecule-like Species, Covalent Chains, and Layers in Magnesium–Nitrogen Mg x N y Phases under High Pressure|journal=The Journal of Physical Chemistry C|volume=121|issue=21|pages=11037–11046|doi=10.1021/acs.jpcc.7b00474|issn=1932-7447}}</ref><ref>{{Cite journal|last1=Wei|first1=Shuli|last2=Li|first2=Da|last3=Liu|first3=Zhao|last4=Li|first4=Xin|last5=Tian|first5=Fubo|last6=Duan|first6=Defang|last7=Liu|first7=Bingbing|last8=Cui|first8=Tian|date=2017|title=Alkaline-earth metal (Mg) polynitrides at high pressure as possible high-energy materials|journal=Physical Chemistry Chemical Physics|volume=19|issue=13|pages=9246–9252|doi=10.1039/C6CP08771J|pmid=28322368|bibcode=2017PCCP...19.9246W|issn=1463-9076}}</ref><ref>{{Cite journal|last1=Xia|first1=Kang|last2=Zheng|first2=Xianxu|last3=Yuan|first3=Jianan|last4=Liu|first4=Cong|last5=Gao|first5=Hao|last6=Wu|first6=Qiang|last7=Sun|first7=Jian|date=2019-04-25|title=Pressure-Stabilized High-Energy-Density Alkaline-Earth-Metal Pentazolate Salts|journal=The Journal of Physical Chemistry C|volume=123|issue=16|pages=10205–10211|doi=10.1021/acs.jpcc.8b12527|s2cid=132258000|issn=1932-7447}}</ref> These include the {{chem2|Mg2N4}} and {{chem2|MgN4}} solids which both become thermodynamically stable near 50 GPa.<ref>{{Cite journal|last1=Laniel|first1=Dominique|last2=Winkler|first2=Bjoern|last3=Koemets|first3=Egor|last4=Fedotenko|first4=Timofey|last5=Bykov|first5=Maxim|last6=Bykova|first6=Elena|last7=Dubrovinsky|first7=Leonid|last8=Dubrovinskaia|first8=Natalia|date=December 2019|title=Synthesis of magnesium-nitrogen salts of polynitrogen anions|journal=Nature Communications|volume=10|issue=1|pages=4515|doi=10.1038/s41467-019-12530-w|issn=2041-1723|pmc=6778147|pmid=31586062|bibcode=2019NatCo..10.4515L}}</ref> The {{chem2|Mg2N4}} is composed of exotic ''cis''-tetranitrogen {{chem2|N4(4−)}} species with N-N bond orders close to one. This {{chem2|Mg2N4}} compound was recovered to ambient conditions, along with the {{chem2|N4(4−)}} units, marking only the fourth polynitrogen entity bulk stabilized at ambient conditions.
Man beating a Arab

==Uses and history==
When isolating ], ] passed dry air over ] to remove ] and over ] to remove the ], forming magnesium nitride.


==Uses==
Magnesium nitride was the ] in the first practical synthesis of ] (cubic ]).<ref>{{cite journal Magnesium nitride was the ] in the first practical synthesis of ] (cubic ]).<ref>{{cite journal
| author = R. H. Wentorf, Jr. | author = R. H. Wentorf, Jr.
| authorlink = Robert H. Wentorf, Jr. | authorlink = Robert H. Wentorf, Jr.
| year = 1961 | date=March 1961
| title = Synthesis of the Cubic Form of Boron Nitride
| month = March
| journal = Journal of Chemical Physics
| title = Synthesis of the Cubic Form of Boron Nitride
| volume = 34
| journal = Journal of Chemical Physics
| volume = 34 | issue = 3
| issue = 3 | pages = 809–812
| doi = 10.1063/1.1731679
| pages = 809–812
| doi = 10.1063/1.1731679 | bibcode = 1961JChPh..34..809W
}}</ref> }}</ref>


] was trying to convert the hexagonal form of boron nitride into the cubic form by a combination of heat, pressure, and a catalyst. He had already tried all the logical catalysts (for instance, those that catalyze the synthesis of ]), but with no success. ] was trying to convert the hexagonal form of boron nitride into the cubic form by a combination of heat, pressure, and a catalyst. He had already tried all the logical catalysts (for instance, those that catalyze the synthesis of ]), but with no success.
Line 78: Line 105:
| accessdate = June 28, 2006 | accessdate = June 28, 2006
| author = Robert H. Wentorf, Jr. | author = Robert H. Wentorf, Jr.
| year = 1993 | date=October 1993
| month = October
| work = R&D Innovator | work = R&D Innovator
}}</ref>), he added some magnesium wire to the hexagonal boron nitride and gave it the same pressure and heat treatment. When he examined the wire under a microscope, he found tiny dark lumps clinging to it. These lumps could scratch a polished block of ], something only diamond was known to do. }}</ref>), he added some magnesium wire to the hexagonal boron nitride and gave it the same pressure and heat treatment. When he examined the wire under a microscope, he found tiny dark lumps clinging to it. These lumps could scratch a polished block of ], something only diamond was known to do.


From the smell of ammonia, caused by the reaction of magnesium nitride with the moisture in the air, he deduced that the magnesium metal had reacted with the boron nitride to form magnesium nitride, which was the true catalyst. From the smell of ammonia, caused by the reaction of magnesium nitride with the moisture in the air, he deduced that the magnesium metal had reacted with the boron nitride to form magnesium nitride, which was the true catalyst.

Magnesium nitride has also been applied to synthesize aluminum nitride nanocrystals, cubic boron nitride and nitrides of aluminum and Group 3 <ref>{{Cite journal|last1=Zong|first1=Fujian|last2=Meng|first2=Chunzhan|last3=Guo|first3=Zhiming|last4=Ji|first4=Feng|last5=Xiao|first5=Hongdi|last6=Zhang|first6=Xijian|last7=Ma|first7=Jin|last8=Ma|first8=Honglei|title=Synthesis and characterization of magnesium nitride powder formed by Mg direct reaction with N2|journal=_Journal of Alloys and Compounds|year=2010 |volume=508|issue=1|pages=172–176|doi=10.1016/j.jallcom.2010.07.224}}</ref> It has also been proposed as an intermediate in a fossil-fuel-free nitrogen fixation process.<ref>{{Cite journal|last1=Hu|first1=Yang|last2=Chen|first2=George Z.|last3=Zhuang|first3=Lin|last4=Wang|first4=Zhivong|last5=Jin|first5=Xianbo|title=Indirect electrosynthesis of ammonia from nitrogen and water by a magnesium chloride cycle at atmospheric pressure|journal=Cell Reports Physical Science|year=2021 |volume=2|issue=5|page=100425|issn=2666-3864|doi=10.1016/j.xcrp.2021.100425|bibcode=2021CRPS....200425H |s2cid=235555007 |doi-access=free}}</ref>


==References== ==References==
{{reflist}} {{reflist}}

==Further reading==
* {{cite journal |author1=Wu, P. |author2=Tiedje, T. | year = 2018| title = Molecular beam epitaxy growth and optical properties of Mg<sub>3</sub>N<sub>2</sub> films | journal = Applied Physics Letters | volume = 113 | issue = 8 | pages = 082101 | publisher = ] | doi = 10.1063/1.5035560 |bibcode=2018ApPhL.113h2101W |s2cid=125356057}}


{{Magnesium compounds}} {{Magnesium compounds}}
{{Nitrides}}


{{DEFAULTSORT:Magnesium Nitride}} {{DEFAULTSORT:Magnesium Nitride}}
] ]
] ]

]
]
]
]
]

Latest revision as of 15:59, 5 December 2024

Magnesium nitride
Magnesium nitride
Magnesium nitride
structure of magnesium nitride
structure of magnesium nitride
Names
IUPAC name Magnesium nitride
Other names trimagnesium dinitride
Identifiers
CAS Number
3D model (JSmol)
ECHA InfoCard 100.031.826 Edit this at Wikidata
EC Number
  • 235-022-1
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/3Mg.2N
  • InChI=1S/3Mg.2N/q3*+2;2*-3
  • InChI=1S/3Mg.2N/q;;+2;2*-1
SMILES
  • ....
Properties
Chemical formula Mg3N2
Molar mass 100.9494 g/mol
Appearance greenish yellow powder
Density 2.712 g/cm
Melting point approx. 1500°C
Hazards
GHS labelling:
Pictograms GHS02: FlammableGHS07: Exclamation mark
Signal word Danger
Hazard statements H228, H315, H319, H335
Precautionary statements P210, P261, P280, P305+P351+P338, P405, P501
Safety data sheet (SDS) External MSDS
Related compounds
Other cations
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Magnesium nitride, which possesses the chemical formula Mg3N2, is an inorganic compound of magnesium and nitrogen. At room temperature and pressure it is a greenish yellow powder.

History

When measuring the boiling point of magnesium, Henri Étienne Sainte-Claire Deville and Henri Caron identified that molten magnesium they distilled covered itself by "small colorless and transparent needles which are destroyed fairly quickly by transforming into ammonia and magnesia". In their 1857 publication the chemists interpreted it as a likely nitride similar to those discovered by Friedrich Wöhler and Heinrich Rose.

It was indeed confirmed in 1862 when Friedrich Briegleb and Johann Georg Anton Geuther synthesized the compound on purpose and first studied it.

Preparation

  • By passing dry nitrogen over heated magnesium at 800 °C:
3 Mg + N2 → Mg3N2
  • or ammonia at 700 °C:
3 Mg + 2 NH3 → Mg3N2 + 3 H2

Chemistry

Magnesium nitride reacts with water to produce magnesium hydroxide and ammonia gas, as do many metal nitrides.

Mg3N2(s) + 6 H2O(l) → 3 Mg(OH)2(aq) + 2 NH3(g)

In fact, when magnesium is burned in air, some magnesium nitride is formed in addition to the principal product, magnesium oxide.

Thermal decomposition of magnesium nitride gives magnesium and nitrogen gas (at 700-1500 °C).

At high pressures, the stability and formation of new nitrogen-rich nitrides (N/Mg ratio equal or greater to one) were suggested and later discovered. These include the Mg2N4 and MgN4 solids which both become thermodynamically stable near 50 GPa. The Mg2N4 is composed of exotic cis-tetranitrogen N4−4 species with N-N bond orders close to one. This Mg2N4 compound was recovered to ambient conditions, along with the N4−4 units, marking only the fourth polynitrogen entity bulk stabilized at ambient conditions.

Uses and history

When isolating argon, William Ramsay passed dry air over copper to remove oxygen and over magnesium to remove the nitrogen, forming magnesium nitride.

Magnesium nitride was the catalyst in the first practical synthesis of borazon (cubic boron nitride).

Robert H. Wentorf, Jr. was trying to convert the hexagonal form of boron nitride into the cubic form by a combination of heat, pressure, and a catalyst. He had already tried all the logical catalysts (for instance, those that catalyze the synthesis of diamond), but with no success.

Out of desperation and curiosity (he called it the "make the maximum number of mistakes" approach), he added some magnesium wire to the hexagonal boron nitride and gave it the same pressure and heat treatment. When he examined the wire under a microscope, he found tiny dark lumps clinging to it. These lumps could scratch a polished block of boron carbide, something only diamond was known to do.

From the smell of ammonia, caused by the reaction of magnesium nitride with the moisture in the air, he deduced that the magnesium metal had reacted with the boron nitride to form magnesium nitride, which was the true catalyst.

Magnesium nitride has also been applied to synthesize aluminum nitride nanocrystals, cubic boron nitride and nitrides of aluminum and Group 3 It has also been proposed as an intermediate in a fossil-fuel-free nitrogen fixation process.

References

  1. "Summary of Classification and Labelling". Retrieved 4 December 2021.
  2. s:fr:Page:Comptes rendus hebdomadaires des séances de l’Académie des sciences, tome 044, 1857.djvu/406
  3. Briegleb, Fr.; Geuther, A. (1862). "Ueber das Stickstoffmagnesium und die Affinitäten des Stickgases zu Metallen". Justus Liebigs Annalen der Chemie (in German). 123 (2): 228–241. doi:10.1002/jlac.18621230212. ISSN 1099-0690.
  4. Yu, Shuyin; Huang, Bowen; Zeng, Qingfeng; Oganov, Artem R.; Zhang, Litong; Frapper, Gilles (June 2017). "Emergence of Novel Polynitrogen Molecule-like Species, Covalent Chains, and Layers in Magnesium–Nitrogen Mg x N y Phases under High Pressure". The Journal of Physical Chemistry C. 121 (21): 11037–11046. doi:10.1021/acs.jpcc.7b00474. ISSN 1932-7447.
  5. Wei, Shuli; Li, Da; Liu, Zhao; Li, Xin; Tian, Fubo; Duan, Defang; Liu, Bingbing; Cui, Tian (2017). "Alkaline-earth metal (Mg) polynitrides at high pressure as possible high-energy materials". Physical Chemistry Chemical Physics. 19 (13): 9246–9252. Bibcode:2017PCCP...19.9246W. doi:10.1039/C6CP08771J. ISSN 1463-9076. PMID 28322368.
  6. Xia, Kang; Zheng, Xianxu; Yuan, Jianan; Liu, Cong; Gao, Hao; Wu, Qiang; Sun, Jian (2019-04-25). "Pressure-Stabilized High-Energy-Density Alkaline-Earth-Metal Pentazolate Salts". The Journal of Physical Chemistry C. 123 (16): 10205–10211. doi:10.1021/acs.jpcc.8b12527. ISSN 1932-7447. S2CID 132258000.
  7. Laniel, Dominique; Winkler, Bjoern; Koemets, Egor; Fedotenko, Timofey; Bykov, Maxim; Bykova, Elena; Dubrovinsky, Leonid; Dubrovinskaia, Natalia (December 2019). "Synthesis of magnesium-nitrogen salts of polynitrogen anions". Nature Communications. 10 (1): 4515. Bibcode:2019NatCo..10.4515L. doi:10.1038/s41467-019-12530-w. ISSN 2041-1723. PMC 6778147. PMID 31586062.
  8. R. H. Wentorf, Jr. (March 1961). "Synthesis of the Cubic Form of Boron Nitride". Journal of Chemical Physics. 34 (3): 809–812. Bibcode:1961JChPh..34..809W. doi:10.1063/1.1731679.
  9. Robert H. Wentorf, Jr. (October 1993). "Discovering a Material That's Harder Than Diamond". R&D Innovator. Retrieved June 28, 2006.
  10. Zong, Fujian; Meng, Chunzhan; Guo, Zhiming; Ji, Feng; Xiao, Hongdi; Zhang, Xijian; Ma, Jin; Ma, Honglei (2010). "Synthesis and characterization of magnesium nitride powder formed by Mg direct reaction with N2". _Journal of Alloys and Compounds. 508 (1): 172–176. doi:10.1016/j.jallcom.2010.07.224.
  11. Hu, Yang; Chen, George Z.; Zhuang, Lin; Wang, Zhivong; Jin, Xianbo (2021). "Indirect electrosynthesis of ammonia from nitrogen and water by a magnesium chloride cycle at atmospheric pressure". Cell Reports Physical Science. 2 (5): 100425. Bibcode:2021CRPS....200425H. doi:10.1016/j.xcrp.2021.100425. ISSN 2666-3864. S2CID 235555007.

Further reading

Magnesium compounds
Salts and covalent derivatives of the nitride ion
NH3
N2H4
+H
HN
H2N
He(N2)11
Li3N
LiN3
Be3N2
Be(N3)2
BN
-B
C4N2
C2N2
β-C3N4
g-C3N4
CxNy
N2 NxOy
+O
N3F
N2F2
N2F4
NF3
+F
Ne
Na3N
NaN3
Mg3N2
Mg(N3)2
AlN Si3N4
-Si
PN
P3N5
-P
SxNy
SN
S2N2
S4N4
SN2H2
NCl3
ClN3
+Cl
Ar
K3N
KN3
Ca3N2
Ca(N3)2
ScN TiN
Ti3N4
VN CrN
Cr2N
MnxNy FexNy Co3N Ni3N Cu3N Zn3N2 GaN Ge3N4
-Ge
AsN
+As
Se4N4 Br3N
BrN3
+Br
Kr
RbN3 Sr3N2
Sr(N3)2
YN ZrN NbN β-Mo2N Tc Ru Rh PdN Ag3N Cd3N2 InN Sn SbN Te4N4? I3N
IN3
+I
Xe
CsN3 Ba3N2
Ba(N3)2
* LuN HfN
Hf3N4
TaN WN RexNy Os Ir Pt Au Hg3N2 Tl3N (PbNH) BiN Po At Rn
Fr Ra3N2 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaN CeN PrN NdN PmN SmN EuN GdN TbN DyN HoN ErN TmN YbN
** Ac ThxNy PaN UxNy NpN PuN AmN CmN BkN Cf Es Fm Md No
Categories:
Magnesium nitride: Difference between revisions Add topic