Revision as of 01:35, 17 June 2022 editTrurle (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers16,588 editsm typo fix← Previous edit | Revision as of 18:28, 10 September 2022 edit undoSir Proxima Centauri (talk | contribs)270 edits Used Pineda et al. (2021) for the Gliese 832's parametersNext edit → | ||
Line 29: | Line 29: | ||
}} | }} | ||
{{Starbox detail | {{Starbox detail | ||
| mass = 0. |
| mass = 0.441 ± 0.011<ref name="Pineda2021"/> | ||
| radius = 0. |
| radius = 0.442 ± 0.018<ref name=Pineda2021/> | ||
| luminosity_bolometric = 0.0276 ± 0.0009 <ref name=Pineda2021/> | |||
| luminosity_bolometric = 0.035{{#tag:ref|Using the absolute visual magnitude of Gliese 832 <math>\scriptstyle M_{V_{\ast}}=10.19</math> with a ] of <math>\scriptstyle BC=-1.821</math><ref name="citation-bolometric_correction"/> the bolometric magnitude can be calculated as <math>\scriptstyle M_{bol_{\ast}}=8.369</math>, the bolometric magnitude of the Sun <math>\scriptstyle M_{bol_{\odot}}=4.73</math>,<ref name="citation-tableprovisoBC"/> and so therefore the bolometric luminosity can be calculated by <math>\scriptstyle \frac{L_{bol_{\ast}}}{L_{bol_{\odot}}}=10^{0.4\left(M_{bol_{\odot}} - M_{bol_{\ast}}\right)}</math>|group="note"|name=luminosity_bolometric}}<!--The derived bolometric luminosity of 0.035 was calculated assuming Gl 832 has a temperature of 3657 Kelvin, and not 3620 Kelvin, because for the sake of consistency I wanted to use a temperature value from the same paper as from where the 10.19 absolute visual magnitude value came from, i.e. both values are taken from Bailey et al. 2008 ("bailey08")--> | |||
| luminosity_visual = 0.007<ref name=luminosity_visual group=note/> | | luminosity_visual = 0.007<ref name=luminosity_visual group=note/> | ||
| gravity = 4.7<ref name="bailey08"/> | | gravity = 4.7<ref name="bailey08"/> | ||
| temperature = 3, |
| temperature = {{val|3,539|79|74|fmt=commas}}<ref name=Pineda2021/> | ||
| metal_fe = |
| metal_fe = −0.06 ± 0.04<ref name="Lindgren2017"/> | ||
| rotation = 37.5{{±|1.4|1.5}}<ref name=Gorrini2022/> | | rotation = 37.5{{±|1.4|1.5}}<ref name=Gorrini2022/> | ||
| age_gyr = 9.24<ref name="age">{{Cite journal|arxiv=1404.0641 |title= Age Aspects of Habitability|journal= International Journal of Astrobiology|volume= 15|issue= 2|pages= 93–105|last1= Safonova|first1= M.|last2= Murthy|first2= J.|last3= Shchekinov|first3= Yu. A.|year= 2014|doi= 10.1017/S1473550415000208|bibcode = 2016IJAsB..15...93S|s2cid=20205600 }}</ref> | | age_gyr = 9.24<ref name="age">{{Cite journal|arxiv=1404.0641 |title= Age Aspects of Habitability|journal= International Journal of Astrobiology|volume= 15|issue= 2|pages= 93–105|last1= Safonova|first1= M.|last2= Murthy|first2= J.|last3= Shchekinov|first3= Yu. A.|year= 2014|doi= 10.1017/S1473550415000208|bibcode = 2016IJAsB..15...93S|s2cid=20205600 }}</ref> | ||
Line 114: | Line 114: | ||
==References== | ==References== | ||
{{reflist|refs= | {{reflist|refs= | ||
<ref name="Pineda2021">{{cite journal | |||
| title=The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars | |||
| last1=Pineda | first1=J. Sebastian | last2=Youngblood | first2=Allison | |||
| last3=France | first3=Kevin | display-authors=1 | |||
⚫ | | journal=The Astrophysical Journal | ||
| volume=918 | issue=1 | id=40 | pages=23 | date=September 2021 | |||
| doi=10.3847/1538-4357/ac0aea | arxiv=2106.07656 | |||
⚫ | | bibcode=2021ApJ...918...40P }}</ref> | ||
<ref name=nodebris> | <ref name=nodebris> | ||
Line 164: | Line 173: | ||
|s2cid=53704989 | |s2cid=53704989 | ||
}}</ref> | }}</ref> | ||
<ref name=bessell1994>Interpolated value from ], per: {{cite conference | |||
|last=Bessell |first=M. S. | |||
|title=The Temperature Scale for Cool Dwarfs | |||
|editor-last=Tinney |editor-first=C. G. | |||
|date=1995 | |||
|book-title=The Bottom of the Main Sequence - and Beyond, Proceedings of the ESO Workshop | |||
|page=123 | |||
|publisher=] | |||
|bibcode=1995bmsb.conf..123B | |||
}}</ref> | |||
<ref name="bailey08"> | <ref name="bailey08"> | ||
Line 238: | Line 236: | ||
|s2cid=12157837 | |s2cid=12157837 | ||
}}</ref> | }}</ref> | ||
<ref name=apjss53_643> | |||
{{cite journal | |||
|last1=Johnson |first1=H. M. | |||
|last2=Wright |first2=C. D. | |||
|date=1983 | |||
|bibcode=1983ApJS...53..643J | |||
|title=Predicted infrared brightness of stars within 25 parsecs of the sun | |||
|journal=] | |||
|volume=53 |pages=643–771 | |||
|doi=10.1086/190905 | |||
}}</ref> | |||
<ref name=Schmitt> | <ref name=Schmitt> | ||
Line 263: | Line 249: | ||
|doi=10.1086/176149 | |doi=10.1086/176149 | ||
}}</ref> | }}</ref> | ||
<ref name="citation-tableprovisoBC"> | |||
{{cite journal | |||
| author=Torres, Guillermo | |||
| title=On the Use of Empirical Bolometric Corrections for Stars | |||
| journal=] |date=November 2010 | volume=140 | issue=5 | pages=1158–1162 | |||
| doi=10.1088/0004-6256/140/5/1158 | |||
| bibcode=2010AJ....140.1158T | |||
| arxiv = 1008.3913 | |||
| s2cid=119219274 | |||
}}</ref> | |||
<ref name="citation-bolometric_correction"> | |||
{{cite journal | |||
| last1=Flower | |||
| first1=Phillip J. | |||
| title=Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections | |||
⚫ | | journal= |
||
| volume=469 | |||
| page=355 | |||
| date=September 1996 | |||
| doi=10.1086/177785 | |||
⚫ | | bibcode= |
||
<ref name="Mike Wall">"Nearby Alien Planet May Be Capable of Supporting Life", Mike Wall, Space.com, June 25, 2014, http://www.space.com/26357-exoplanet-habitable-zone-gliese-832c.html</ref> | <ref name="Mike Wall">"Nearby Alien Planet May Be Capable of Supporting Life", Mike Wall, Space.com, June 25, 2014, http://www.space.com/26357-exoplanet-habitable-zone-gliese-832c.html</ref> |
Revision as of 18:28, 10 September 2022
Red dwarf in the constellation GrusObservation data Epoch J2000.0 Equinox J2000.0 | |
---|---|
Constellation | Grus |
Right ascension | 21 33 33.9750 |
Declination | −49° 00′ 32.4035″ |
Apparent magnitude (V) | 8.66 |
Characteristics | |
Evolutionary stage | main-sequence star |
Spectral type | M2V |
B−V color index | 1.52 |
Astrometry | |
Radial velocity (Rv) | 18.0 km/s |
Proper motion (μ) | RA: −45.834±0.071 mas/yr Dec.: −816.604±0.064 mas/yr |
Parallax (π) | 201.3252 ± 0.0237 mas |
Distance | 16.200 ± 0.002 ly (4.9671 ± 0.0006 pc) |
Absolute magnitude (MV) | 10.19 |
Details | |
Mass | 0.441 ± 0.011 M☉ |
Radius | 0.442 ± 0.018 R☉ |
Luminosity (bolometric) | 0.0276 ± 0.0009 L☉ |
Luminosity (visual, LV) | 0.007 L☉ |
Surface gravity (log g) | 4.7 cgs |
Temperature | 3,539+79 −74 K |
Metallicity | −0.06 ± 0.04 dex |
Rotation | 37.5 −1.5 |
Age | 9.24 Gyr |
Other designations | |
CD-49°13515, HD 204961, HIP 106440, LHS 3685, PLX 5190 | |
Database references | |
SIMBAD | The star |
planet c | |
planet b | |
Exoplanet Archive | data |
Data sources: | |
Hipparcos Catalogue, HD | |
Gliese 832Location of Gliese 832 in the constellation Grus |
Gliese 832 (Gl 832 or GJ 832) is a red dwarf of spectral type M2V in the southern constellation Grus. The apparent visual magnitude of 8.66 means that it is too faint to be seen with the naked eye. It is located relatively close to the Sun, at a distance of 16.2 light years and has a high proper motion of 818.93 milliarcseconds per year. Gliese 832 has just under half the mass and radius of the Sun. Its estimated rotation period is a relatively leisurely 46 days. The star is roughly 9.5 billion years old.
This star achieved perihelion some 52,920 years ago when it came within an estimated 15.71 ly (4.817 pc) of the Sun.
Gliese 832 emits X-rays. Despite the strong flare activity, Gliese 832 is producing on average less ionizing radiation than the Sun. Only at extremely short radiation wavelengths (<50nm) does its radiation intensity rise above the level of quiet Sun, but does not reach levels typical for active Sun.
Planetary system
Gliese 832 hosts two known planets.
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
c (disputed) | ≥5.4±1 M🜨 | 0.162±0-017 | 35.68±0.03 | 0.18 ± 0.13 | — | — |
b | ≥0.62 MJ | 3.46 | 3507±181 | 0.08±0.05 | — | — |
In September 2008, it was announced that a Jupiter-like planet, now designated as Gliese 832 b, had been detected in a long-period, near-circular orbit around this star (false alarm probability thus far: a negligible 0.05%). It would induce an astrometric perturbation on its star of at least 0.95 milliarcseconds and is thus a good candidate for being detected by astrometric observations. Despite its relatively large angular distance, direct imaging is problematic due to the star–planet contrast. The orbital solution of the planet was refined in 2011.
In 2014, a second planet Gliese 832 c was discovered by astronomers at the University of New South Wales. This one is believed to be of super-Earth mass and has since been given the scientific name Gliese 832 c. It was announced to orbit in the optimistic habitable zone but outside the conservative habitable zone of its parent star. The planet Gliese 832 c is believed to be in, or very close to, the right distance from its sun to allow liquid water to exist on its surface. The existence of the planet was disputed in 2022 though.
The region between Gliese 832 b and Gliese 832 c is a zone where additional planets are possible.
Search for cometary disc
If this system has a comet disc, it is undetectable "brighter than the fractional dust luminosity 10" of a recent Herschel study.
See also
Notes
- Using the absolute visual magnitude of Gliese 832 and the absolute visual magnitude of the Sun , the visual luminosity can be calculated by
References
- ^ Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
- ^ Bailey, J.; Butler, R. P.; Tinney, C. G.; Jones, H. R. A.; O'Toole, S.; Carter, B. D.; Marcy, G. W. (2009). "A Jupiter-like Planet Orbiting the Nearby M Dwarf GJ832". The Astrophysical Journal. 690 (1): 743–747. arXiv:0809.0172. Bibcode:2009ApJ...690..743B. doi:10.1088/0004-637X/690/1/743. S2CID 17172233.
- ^ Suárez Mascareño, A.; et al. (September 2015), "Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators", Monthly Notices of the Royal Astronomical Society, 452 (3): 2745–2756, arXiv:1506.08039, Bibcode:2015MNRAS.452.2745S, doi:10.1093/mnras/stv1441, S2CID 119181646.
{{citation}}
: CS1 maint: unflagged free DOI (link) - Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
- ^ Pineda, J. Sebastian; et al. (September 2021). "The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars". The Astrophysical Journal. 918 (1): 23. arXiv:2106.07656. Bibcode:2021ApJ...918...40P. doi:10.3847/1538-4357/ac0aea. 40.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - Lindgren, Sara; Heiter, Ulrike (2017). "Metallicity determination of M dwarfs. Expanded parameter range in metallicity and effective temperature". Astronomy and Astrophysics. 604: A97. arXiv:1705.08785. Bibcode:2017A&A...604A..97L. doi:10.1051/0004-6361/201730715. S2CID 119216828.
- ^ Detailed stellar activity analysis and modelling of GJ 832: Reassessment of the putative habitable zone planet GJ 832c, 2022, arXiv:2206.07552
- ^ Safonova, M.; Murthy, J.; Shchekinov, Yu. A. (2014). "Age Aspects of Habitability". International Journal of Astrobiology. 15 (2): 93–105. arXiv:1404.0641. Bibcode:2016IJAsB..15...93S. doi:10.1017/S1473550415000208. S2CID 20205600.
- "Gliese 832". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2018-09-23.
- ^ "Nearby Alien Planet May Be Capable of Supporting Life", Mike Wall, Space.com, June 25, 2014, http://www.space.com/26357-exoplanet-habitable-zone-gliese-832c.html
- ^ Bailer-Jones, C. A. L. (March 2015), "Close encounters of the stellar kind", Astronomy & Astrophysics, 575: 13, arXiv:1412.3648, Bibcode:2015A&A...575A..35B, doi:10.1051/0004-6361/201425221, S2CID 59039482, A35.
- Schmitt, J. H. M. M.; Fleming, T. A.; Giampapa, M. S. (1995). "The X-ray view of the low-mass stars in the solar neighborhood". The Astrophysical Journal. 450 (9): 392–400. Bibcode:1995ApJ...450..392S. doi:10.1086/176149.
- Fontenla, J. M.; Linsky, Jeffrey L.; Garrison, Jesse; France, Kevin; Buccino, A.; Mauas, Pablo; Vietes, Mariela; Walkowicz, Lucianne M. (2016). "SEMI-EMPIRICAL MODELING OF THE PHOTOSPHERE, CHROMOSPHERE, TRANSITION REGION, AND CORONA OF THE M-DWARF HOST STAR GJ 832". The Astrophysical Journal. 830 (2): 154. Bibcode:2016ApJ...830..154F. doi:10.3847/0004-637X/830/2/154.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Bonfils, Xavier; Delfosse, Xavier; Udry, Stéphane; Forveille, Thierry; Mayor, Michel; Perrier, Christian; Bouchy, François; Gillon, Michaël; Lovis, Christophe; Pepe, Francesco; Queloz, Didier; Santos, Nuno C.; Ségransan, Damien; Bertaux, Jean-Loup (2011). "The HARPS search for southern extra-solar planets XXXI. The M-dwarf sample". Astronomy and Astrophysics: A109. arXiv:1111.5019. Bibcode:2013A&A...549A.109B. doi:10.1051/0004-6361/201014704. S2CID 119288366.
- Wittenmyer, R.A.; Tuomi, M.; Butler, R.P.; Jones, H. R. A.; O'Anglada-Escude, G.; Horner, J.; Tinney, C.G.; Marshall, J.P.; Carter, B.D.; et al. (2014). "GJ 832c: A super-earth in the habitable zone". The Astrophysical Journal. 1406 (2): 5587. arXiv:1406.5587. Bibcode:2014ApJ...791..114W. doi:10.1088/0004-637X/791/2/114. S2CID 12157837.
- Satyal, S.; Griffith, J.; Musielak, Z. E. (2016), "Dynamics of a Probable Earth-mass Planet in GJ 832 System", The Astrophysical Journal, 845 (2): 106, arXiv:1604.04544, doi:10.3847/1538-4357/aa80e2, S2CID 118663957
{{citation}}
: CS1 maint: unflagged free DOI (link) - B. C. Matthews; forthcoming study promised in Lestrade, J.-F.; Matthews, B. C.; Sibthorpe, B.; Kennedy, G. M.; Wyatt, M. C.; Bryden, G.; Greaves, J. S.; Thilliez, E.; Moro-Martín, A.; Booth, M.; Dent, W. R. F.; Duchêne, G.; Harvey, P. M.; Horner, J.; Kalas, P.; Kavelaars, J. J.; Phillips, N. M.; Rodriguez, D. R.; Su, K. Y. L.; Wilner, D. J. (2012). "A DEBRIS Disk Around The Planet Hosting M-star GJ581 Spatially Resolved with Herschel". Astronomy and Astrophysics. 548: A86. arXiv:1211.4898. Bibcode:2012A&A...548A..86L. doi:10.1051/0004-6361/201220325. S2CID 53704989.
Known celestial objects within 20 light-years | |||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
Italic are systems without known trigonometric parallax. |
Constellation of Grus | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Stars |
| ||||||||||
| |||||||||||
Galaxies |
| ||||||||||
| |||||||||||
Category |