Misplaced Pages

QR code: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 17:33, 14 July 2018 view source66.24.27.23 (talk) IcxcccvvTags: Mobile edit Mobile web edit← Previous edit Revision as of 20:40, 14 July 2018 view source LiberatorG (talk | contribs)Extended confirmed users11,399 editsm Reverted 1 edit by 66.24.27.23 (talk) to last revision by Mindmatrix. (TW)Tag: UndoNext edit →
Line 1: Line 1:
] of the English Misplaced Pages Mobile main page]] ] of the English Misplaced Pages Mobile main page]]


'''QR code''' (abbreviated from '''Quick Response Code''') is the trademark for a type of ] (or two-dimensions sional ]) first designed in 1994 for the ]. A barcode is a machine-readable optical label that contains information about the item to which it is attached. A QR code uses four standardized encoding modes (numeric, alphanumeric, byte/binary, and ]) to efficiently store data; extensions may also be used.<ref name="QRCodefeatures">{{cite web |url=http://www.qrcode.com/en/qrfeature.html |title=QR Code features |publisher=Denso-Wave |accessdate=3 October 2011 |archiveurl=https://web.archive.org/web/20130129064920/http://www.qrcode.com/en/qrfeature.html |archivedate=2013-01-29}}</ref> '''QR code''' (abbreviated from '''Quick Response Code''') is the trademark for a type of ] (or two-dimensional ]) first designed in 1994 for the ]. A barcode is a machine-readable optical label that contains information about the item to which it is attached. A QR code uses four standardized encoding modes (numeric, alphanumeric, byte/binary, and ]) to efficiently store data; extensions may also be used.<ref name="QRCodefeatures">{{cite web |url=http://www.qrcode.com/en/qrfeature.html |title=QR Code features |publisher=Denso-Wave |accessdate=3 October 2011 |archiveurl=https://web.archive.org/web/20130129064920/http://www.qrcode.com/en/qrfeature.html |archivedate=2013-01-29}}</ref>


The Quick Response (QR code) system became popular outside the automotive industry due to its fast readability and greater storage capacity compared to standard ]. Applications include product tracking, item identification, time tracking, document management, and general marketing.<ref name=autogenerated1>{{cite web |url=http://www.nacs.org/LinkClick.aspx?fileticket=D1FpVAvvJuo%3D&tabid=1426&mid=4802 |title=QR Code Essentials |publisher=Denso ADC |year=2011 |accessdate=12 March 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20130512180619/http://www.nacs.org/LinkClick.aspx?fileticket=D1FpVAvvJuo%3d&tabid=1426&mid=4802 |archivedate=12 May 2013 |df=dmy-all }}</ref> The Quick Response (QR code) system became popular outside the automotive industry due to its fast readability and greater storage capacity compared to standard ]. Applications include product tracking, item identification, time tracking, document management, and general marketing.<ref name=autogenerated1>{{cite web |url=http://www.nacs.org/LinkClick.aspx?fileticket=D1FpVAvvJuo%3D&tabid=1426&mid=4802 |title=QR Code Essentials |publisher=Denso ADC |year=2011 |accessdate=12 March 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20130512180619/http://www.nacs.org/LinkClick.aspx?fileticket=D1FpVAvvJuo%3d&tabid=1426&mid=4802 |archivedate=12 May 2013 |df=dmy-all }}</ref>

Revision as of 20:40, 14 July 2018

QR code for the URL of the English Misplaced Pages Mobile main page

QR code (abbreviated from Quick Response Code) is the trademark for a type of matrix barcode (or two-dimensional barcode) first designed in 1994 for the automotive industry in Japan. A barcode is a machine-readable optical label that contains information about the item to which it is attached. A QR code uses four standardized encoding modes (numeric, alphanumeric, byte/binary, and kanji) to efficiently store data; extensions may also be used.

The Quick Response (QR code) system became popular outside the automotive industry due to its fast readability and greater storage capacity compared to standard UPC barcodes. Applications include product tracking, item identification, time tracking, document management, and general marketing.

A QR code consists of black squares arranged in a square grid on a white background, which can be read by an imaging device such as a camera, and processed using Reed–Solomon error correction until the image can be appropriately interpreted. The required data is then extracted from patterns that are present in both horizontal and vertical components of the image. It is now widely used around the world to get to websites quicker, and it can also be used for advertisements.

History

The QR code system was invented in 1994 by the Japanese company Denso Wave. Its purpose was to track vehicles during manufacturing; it was designed to allow high-speed component scanning. QR codes are now used in a much broader context, including both commercial tracking applications and convenience-oriented applications aimed at mobile-phone users (termed mobile tagging). QR codes may be used to display text to the user, to add a vCard contact to the user's device, to open a Uniform Resource Identifier (URI), or to compose an email or text message. There are a great many QR code generators available as software or as online tools. The QR code has become one of the most-used types of two-dimensional code.

Standards

Structure of a QR code, highlighting functional elements

There are several standards that cover the encoding of data as QR codes:

At the application layer, there is some variation between most of the implementations. Japan's NTT DoCoMo has established de facto standards for the encoding of URLs, contact information, and several other data types. The open-source "ZXing" project maintains a list of QR code data types.

Uses

A QR code used on a large billboard in Japan, linking to the sagasou.mobi website

QR codes have become common in consumer advertising. Typically, a smartphone is used as a QR code scanner, displaying the code and converting it to some useful form (such as a standard URL for a website, thereby obviating the need for a user to type it into a web browser). QR code has become a focus of advertising strategy, since it provides a way to access a brand's website more quickly than by manually entering a URL. Beyond mere convenience to the consumer, the importance of this capability is that it increases the conversion rate: the chance that contact with the advertisement will convert to a sale). It coaxes interested prospects further down the conversion funnel with little delay or effort, bringing the viewer to the advertiser's website immediately, where a longer and more targeted sales pitch may lose the viewer's interest.

Although initially used to track parts in vehicle manufacturing, QR codes are used over a much wider range of applications. These include commercial tracking, entertainment and transport ticketing, product and loyalty marketing and in-store product labeling. Examples of marketing include where a company's discounted and percent discount can be captured using a QR code decoder which is a mobile app, or storing a company's information such as address and related information alongside its alpha-numeric text data as can be seen in Yellow Pages directory.

They can also be used in storing personal information for use by organizations. An example of this is Philippines National Bureau of Investigation (NBI) where NBI clearances now come with a QR code. Many of these applications target mobile-phone users (via mobile tagging). Users may receive text, add a vCard contact to their device, open a URI, or compose an e-mail or text message after scanning QR codes. They can generate and print their own QR codes for others to scan and use by visiting one of several pay or free QR code-generating sites or apps. Google had an API, now deprecated, to generate QR codes, and apps for scanning QR codes can be found on nearly all smartphone devices.

QR codes have been used and printed on train tickets in China since 2010.

QR codes storing addresses and URLs may appear in magazines, on signs, on buses, on business cards, or on almost any object about which users might want information. Users with a camera phone equipped with the correct reader application can scan the image of the QR code to display text, contact information, connect to a wireless network, or open a web page in the telephone's browser. This act of linking from physical world objects is termed hardlinking or object hyperlinking. QR codes also may be linked to a location to track where a code has been scanned. Either the application that scans the QR code retrieves the geo information by using GPS and cell tower triangulation (aGPS) or the URL encoded in the QR code itself is associated with a location. In 2008, a Japanese stonemason announced plans to engrave QR codes on gravestones, allowing visitors to view information about the deceased, and family members to keep track of visits. Psychologist Richard Wiseman was one of the first authors to include QR codes in a book, in Paranormality: Why We See What Isn't There (2011).

QR codes have been incorporated into currency. In June 2011 The Royal Dutch Mint (Koninklijke Nederlandse Munt) issued the world's first official coin with a QR code to celebrate the centenary of its current building and premises. The coin can be scanned by a smartphone and link to a special website with contents about the historical event and design of the coin. In 2014 the Central Bank of Nigeria issued a 100-naira banknote to commemorate its centennial, the first banknote to incorporate a QR code in its design. When scanned with an internet-enabled mobile device, the code goes to a website which tells the centenary story of Nigeria. In 2015, the Central Bank of the Russian Federation issued a 100-rubles note to commemorate the annexation of Crimea by the Russian Federation. It contains a QR code into its design, and when scanned with an internet-enabled mobile device, the code goes to a website that details the historical and technical background of the commemorative note. In 2017, the Bank of Ghana issued a 5-cedis banknote to commemorate 60 years of Central Banking in Ghana, and contains a QR code in its design, which when scanned with an internet-enabled mobile device, that code goes to the official Bank of Ghana website.

Credit card functionality is under development. On February 20, 2016, the Reserve Bank of India (RBI) will launch the eponymously named Bharat QR, a common QR code jointly developed by all the four major card payment companies - National Payments Corporation of India that runs RuPay cards along with MasterCard, Visa and American Express. It will also have the capability of accepting payments on the unified payments interface (UPI) platform.

Mobile operating systems

QR codes can be used on various mobile device operating systems. These devices support URL redirection, which allows QR codes to send metadata to existing applications on the device. Many paid or free apps are available with the ability to scan the codes and hard-link to an external URL.

URLs

URLs aided marketing conversion rates even in the pre-smartphone era, but during those years faced several limitations: ad viewers usually had to type the URL and often did not have a web browser in front of them when they first viewed the ad. The chances were high that they would forget to visit the site later, not bother to type a URL, or forget what URL to type. Semantic URLs decreased these risks but did not eliminate them. Some of these disadvantages to URL conversion rates are fading away now that smartphones are putting web access and voice recognition in constant reach, with QR code providing the URL for instant access.

Virtual stores

During the month of June 2011, according to one study, 14 million mobile users scanned a QR code or a barcode. Some 58% of those users scanned a QR or barcode from their homes, while 39% scanned from retail stores; 53% of the 14 million users were men between the ages of 18 and 34. The use of QR codes for "virtual store" formats started in South Korea, and Argentina, but is currently expanding globally. Walmart, Procter & Gamble and Woolworths have already adopted the Virtual Store concept.

QR code payment

Main article: QR code payment

QR codes can be used to store bank account information or credit card information, or they can be specifically designed to work with particular payment provider applications. There are several trial applications of QR code payments across the world. In developing countries like India and China, QR code payment is a very popular and convenient method of paying and some big names in such industry are WeChat Pay and PayTM.

In November 2012, QR code payments were deployed on a larger scale in the Czech Republic when an open format for payment information exchange - a Short Payment Descriptor - was introduced and endorsed by the Czech Banking Association as the official local solution for QR payments. In 2013, the European Payment Council provided guidelines for the EPC QR code enabling SCT initiation within the Eurozone.

QR codes are commonly used in the field of cryptographic currencies, particularly those based on and including Bitcoin. Payment addresses, cryptographic keys and transaction information are often shared between digital wallets in this way.

Website login

QR codes can be used to log into websites: a QR code is shown on the login page on a computer screen, and when a registered user scans it with a verified smartphone, they will automatically be logged in. Authentication is performed by the smartphone which contacts the server. Google tested such a login method in January 2012.

WiFi network login

By specifying the SSID, encryption type, password/passphrase, and if the SSID is hidden or not, mobile device users can quickly scan and join networks without having to manually enter the data. Note: This only specifies static SSID passwords (i.e. PSK), this does not encode dynamic user credentials (i.e. Enterprise/802.1x).

The format of the encoded string is:

WIFI:S:<SSID>;T:<WPA|WEP|>;P:<password>;H:<true|false|>;

Order of fields does not matter. Special characters "", ";", "," and ":" should be escaped with a backslash ("\") as in MECARD encoding. For example, if an SSID was literally "foo;bar\baz" (with double quotes part of the SSID name itself) then it would be encoded like: WIFI:S:\"foo\;bar\\baz\";;

As of January 2018 iPhones have this feature built into the camera app since iOS 11.x -- Android users can use the free app "Barcode Scanner" or "QR Droid" to perform the QR wifi join. The barcode scanner feature in Firefox for Android recognizes the data type as "WLAN login" but currently takes no action.

Funerary use

In 2008, Ishinokoe in Yamanashi Prefecture, Japan began to sell tombstones with QR codes produced by IT DeSign, where the code leads to a virtual grave site of the deceased. Other companies, such as Wisconsin based Interactive Headstones, have begun implementing QR codes into tombstones. In 2014 the Jewish Cemetery of La Paz in Uruguay, began implementing QR codes for tombstones.

Transcripts and Degrees

Verification of transcripts and degree certificates in developing countries such as India, China, Mexico, Thailand, etc. using QR code is also popular due to their cost effectiveness and conveniency. Many universities such as University of Calcutta, University of Mumbai, APJ Abdul Kalam Technical University, Karnataka University, Sinaloa Secretaría de Educación Pública y Cultura (Mexico), Mahidol University, etc. have adopted this technology to make their degrees certificates tamper proof. Millions of students are benefiting from such simple application of QR code.

The earliest recorded research on Transcripts/Degrees using QR code for verification was published by Somdip Dey, with results from a prototype system built in 2013, which has shaped the development of such systems to reduce forgery of academic documents.

Encryption

Japanese immigration landing permission with a QR code at the bottom. The QR code content is encrypted.

Encrypted QR codes, which are not very common, have a few applications. For example, there is an Android app, that manages encryption and decryption of QR codes using the Data Encryption Standard algorithm. There are also many custom built encryption algorithms used for QR code encryption. Some popular algorithms in this area consist of published works by Somdip Dey.

The Japanese immigration system usage of encrypted QR codes on landing permission stamps in passports, is another example.

Video games

Popular video games, such as Fez and The Talos Principle and Watchdogs , have incorporated QR codes as story and/or gameplay elements.

Design

Unlike the older, one-dimensional barcodes that were designed to be mechanically scanned by a narrow beam of light, a QR code is detected by a 2-dimensional digital image sensor and then digitally analyzed by a programmed processor. The processor locates the three distinctive squares at the corners of the QR code image, using a smaller square (or multiple squares) near the fourth corner to normalize the image for size, orientation, and angle of viewing. The small dots throughout the QR code are then converted to binary numbers and validated with an error-correcting algorithm.

Storage

The amount of data that can be stored in the QR code symbol depends on the datatype (mode, or input character set), version (1, …, 40, indicating the overall dimensions of the symbol), and error correction level. The maximum storage capacities occur for 40-L symbols (version 40, error correction level L):

Maximum character storage capacity (40-L)
character refers to individual values of the input mode/datatype
Input mode Max. characters Bits/char. Possible characters, default encoding
Numeric only 7,089 3⅓ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Alphanumeric 4,296 0–9, A–Z (upper-case only), space, $, %, *, +, -, ., /, :
Binary/byte 2,953 8 ISO 8859-1
Kanji/kana 1,817 13 Shift JIS X 0208

Here are some sample QR code symbols:

  • Version 1 (21×21). Content: "Ver1" Version 1 (21×21). Content: "Ver1"
  • Version 2 (25×25). Content: "Version 2" Version 2 (25×25). Content: "Version 2"
  • Version 3 (29×29). Content: "Version 3 QR Code" Version 3 (29×29). Content: "Version 3 QR Code"
  • Version 4 (33×33). Content: "Version 4 QR Code, up to 50 char" Version 4 (33×33). Content: "Version 4 QR Code, up to 50 char"
  • Version 10 (57×57). Content: "VERSION 10 QR CODE, UP TO 174 CHAR AT H LEVEL, WITH 57X57 MODULES AND PLENTY OF ERROR-CORRECTION TO GO AROUND. NOTE THAT THERE ARE ADDITIONAL TRACKING BOXES" Version 10 (57×57). Content: "VERSION 10 QR CODE, UP TO 174 CHAR AT H LEVEL, WITH 57X57 MODULES AND PLENTY OF ERROR-CORRECTION TO GO AROUND. NOTE THAT THERE ARE ADDITIONAL TRACKING BOXES"
  • Version 25 (117×117 enlarged to 640x640) Version 25 (117×117 enlarged to 640x640)
  • Version 40 (177×177). Content: 1,264 characters of ASCII text describing QR codes Version 40 (177×177). Content: 1,264 characters of ASCII text describing QR codes

Error correction

Damaged but still decodable QR code, Link to http://en.m.wikipedia.org
Example of a QR code with artistic embellishment that will still scan correctly thanks to error correction

Codewords are 8 bits long and use the Reed–Solomon error correction algorithm with four error correction levels. The higher the error correction level, the less storage capacity. The following table lists the approximate error correction capability at each of the four levels:

Level L (Low) 7% of codewords can be restored.
Level M (Medium) 15% of codewords can be restored.
Level Q (Quartile) 25% of codewords can be restored.
Level H (High) 30% of codewords can be restored.

In larger QR symbols, the message is broken up into several Reed–Solomon code blocks. The block size is chosen so that at most 15 errors can be corrected in each block; this limits the complexity of the decoding algorithm. The code blocks are then interleaved together, making it less likely that localized damage to a QR symbol will overwhelm the capacity of any single block.

Due to error correction, it is possible to create artistic QR codes that still scan correctly, but contain intentional errors to make them more readable or attractive to the human eye, as well as to incorporate colors, logos, and other features into the QR code block.

It is also possible to design artistic QR codes without reducing the error correction capacity by manipulating the underlying mathematical constructs.

Encoding

The format information records two things: the error correction level and the mask pattern used for the symbol. Masking is used to break up patterns in the data area that might confuse a scanner, such as large blank areas or misleading features that look like the locator marks. The mask patterns are defined on a grid that is repeated as necessary to cover the whole symbol. Modules corresponding to the dark areas of the mask are inverted. The format information is protected from errors with a BCH code, and two complete copies are included in each QR symbol.

The message dataset is placed from right to left in a zigzag pattern, as shown below. In larger symbols, this is complicated by the presence of the alignment patterns and the use of multiple interleaved error-correction blocks.

  • Meaning of format information Meaning of format information
  • Message placement within a QR symbol Message placement within a QR symbol
  • Larger symbol illustrating interleaved blocks Larger symbol illustrating interleaved blocks

The general structure of a QR encoding is as a sequence of 4 bit indicators with payload length dependent on the indicator mode (e.g. byte encoding payload length is dependent on the first byte).

Mode indicator Description Typical structure ''
0001 Numeric
0010 Alphanumeric
0100 Byte encoding
1000 Kanji encoding
0011 Structured append
0111 ECI
0101 FNC1 in first position
1001 FNC1 in second position
0000 End of message
Note:
  • Character Count Indicator depends on how many modules are in a QR code (Symbol Version).
  • ECI Assignment number Size:
    • 8 × 1 bits if ECI Assignement Bitstream starts with '0'
    • 8 × 2 bits if ECI Assignement Bitstream starts with '10'
    • 8 × 3 bits if ECI Assignement Bitstream starts with '110'

Four-bit indicators are used to select the encoding mode and convey other information.

Encoding modes
Indicator Meaning
0001 Numeric encoding (10 bits per 3 digits)
0010 Alphanumeric encoding (11 bits per 2 characters)
0100 Byte encoding (8 bits per character)
1000 Kanji encoding (13 bits per character)
0011 Structured append (used to split a message across multiple QR symbols)
0111 Extended Channel Interpretation (select alternate character set or encoding)
0101 FNC1 in first position (see Code 128 for more information)
1001 FNC1 in second position
0000 End of message (Terminator)

Encoding modes can be mixed as needed within a QR symbol. (e.g., a url with a long string of alphanumeric characters )

 -->  --> etc... --> 

After every indicator that selects an encoding mode is a length field that tells how many characters are encoded in that mode. The number of bits in the length field depends on the encoding and the symbol version.

Number of bits in a length field (Character Count Indicator)
Encoding Ver. 1–9 10–26 27–40
Numeric 10 12 14
Alphanumeric 9 11 13
Byte 8 16 16
Kanji 8 10 12

Alphanumeric encoding mode stores a message more compactly than the byte mode can, but cannot store lower-case letters and has only a limited selection of punctuation marks, which are sufficient for rudimentary web addresses. Two characters are coded in an 11-bit value by this formula:

V = 45 × C1 + C2

This has the exception that the last character in an alphanumeric string with an odd length is read as a 6-bit value instead.

Alphanumeric character codes
Code Character Code Character Code Character Code Character Code Character
00 0 09 9 18 I 27 R 36 Space
01 1 10 A 19 J 28 S 37 $
02 2 11 B 20 K 29 T 38 %
03 3 12 C 21 L 30 U 39 *
04 4 13 D 22 M 31 V 40 +
05 5 14 E 23 N 32 W 41
06 6 15 F 24 O 33 X 42 .
07 7 16 G 25 P 34 Y 43 /
08 8 17 H 26 Q 35 Z 44 :

Decoding example

The following images offer more information about the QR code.

  • 1 — Introduction 1 — Introduction
  • 2 — Structure 2 — Structure
  • 3 — Layout & Encoding 3 — Layout & Encoding
  • 4 — Levels & Masks 4 — Levels & Masks
  • 5 — Protocols 5 — Protocols

Variants

Micro QR code

Micro QR code is a smaller version of the QR code standard for applications where symbol size is limited. There are four different versions (sizes) of Micro QR codes: the smallest is 11×11 modules; the largest can hold 35 numeric characters.

IQR code

IQR Code is an alternative to existing QR codes developed by Denso Wave. IQR codes can be created in square or rectangular formations; this is intended for situations where a rectangular barcode would otherwise be more appropriate, such as cylindrical objects. IQR codes can fit the same amount of information in 30% less space. There are 61 versions of square IQR codes, and 15 versions of rectangular codes. For squares, the minimum size is 9x9 modules; rectangles have a minimum of 19x5 modules. IQR codes add error correction level S, which allows for 50% error correction. IQR Codes have not yet been given an ISO specification, and only proprietary Denso Wave products can create or read IQR codes.

SQRC

SQRC is a type of QR code equipped with reading restricting function. This can be used to store private information and to manage company's internal information and the like.

Frame QR

FrameQR is a QR code with a “canvas area” that can be flexibly used. In the center of this code is the canvas area, where graphics, letters, and more can be flexibly arranged, making it possible to lay out the code without losing the design of illustrations, photos, etc.

Model 1 QR code is an older version of the specification. It is visually similar to the widely seen model 2 codes, but lacks alignment patterns.

  • Micro QR code example Micro QR code example
  • Micro QR code functional regions Micro QR code functional regions
  • Model 1 QR code example Model 1 QR code example
  • Model 1 QR code functional regions Model 1 QR code functional regions

License

The use of QR code technology is freely licensed as long as users follow the standards for QR Code documented with JIS or ISO. Non-standardized codes may require special licensing.

Denso Wave owns a number of patents on QR code technology, but has chosen to exercise them in a limited fashion. In order to promote widespread usage of the technology Denso Wave chose to waive its rights to a key patent in its possession for standardized codes only. In the USA, the granted QR code patent is US 5726435 , and in Japan JP 2938338 . The European Patent Office granted patent "EPO 0672994". to Denso Wave, which was then validated into French, UK, and German patents, all of which expired in March 2015.

The text QR Code itself is a registered trademark and wordmark of Denso Wave Incorporated. In UK, the trademark is registered as E921775, the word "QR Code", with a filing date of 03/09/1998. The UK version of the trademark is based on the Kabushiki Kaisha Denso (DENSO CORPORATION) trademark, filed as Trademark 000921775, the word "QR Code", on 03/09/1998 and registered on 6/12/1999 with the European Union OHIM (Office for Harmonization in the Internal Market). The U.S. Trademark for the word "QR Code" is Trademark 2435991 and was filed on 29 September 1998 with an amended registration date of 13 March 2001, assigned to Denso Corporation.

Risks

The only context in which common QR codes can carry executable data is the URL data type. These URLs may host JavaScript code, which can be used to exploit vulnerabilities in applications on the host system, such as the reader, the web browser or the image viewer, since a reader will typically send the data to the application associated with the data type used by the QR code.

In the case of no software exploits, malicious QR codes combined with a permissive reader can still put a computer's contents and user's privacy at risk. This practice is known as "attagging", a portmanteau of "attack tagging". They are easily created and can be affixed over legitimate QR codes. On a smartphone, the reader's permissions may allow use of the camera, full Internet access, read/write contact data, GPS, read browser history, read/write local storage, and global system changes.

Risks include linking to dangerous web sites with browser exploits, enabling the microphone/camera/GPS, and then streaming those feeds to a remote server, analysis of sensitive data (passwords, files, contacts, transactions), and sending email/SMS/IM messages or DDOS packets as part of a botnet, corrupting privacy settings, stealing identity, and even containing malicious logic themselves such as JavaScript or a virus. These actions could occur in the background while the user is only seeing the reader opening a seemingly harmless web page. In Russia, a malicious QR code caused phones that scanned it to send premium texts at a fee of US$6 each.

Extension

Samples of the High Capacity Colored 2-Dimensional (HCC2D) code: (a) 4-color HCC2D code and (b) 8-color HCC2D code.

Researchers have proposed a new High Capacity Colored 2-Dimensional (HCC2D) Code, which builds upon a QR code basis for preserving the QR robustness to distortions and uses colors for increasing data density (at this stage it is still in prototyping phase). The HCC2D code specification is described in details in Querini et al. (2014), while techniques for color classification of HCC2D code cells are described in detail in Querini and Italiano (2014), which is an extended version of Querini and Italiano (2013).

Introducing colors into QR codes requires addressing additional issues. In particular, during QR code reading only the brightness information is taken into account, while HCC2D codes have to cope with chromatic distortions during the decoding phase. In order to ensure adaptation to chromatic distortions which arise in each scanned code, HCC2D codes make use of an additional field: the Color Palette Pattern. This is because color cells of a Color Palette Pattern are supposed to be distorted in the same way as color cells of the Encoding Region. Replicated color palettes are used for training machine learning classifiers.

See also

References

  1. "QR Code features". Denso-Wave. Archived from the original on 29 January 2013. Retrieved 3 October 2011.
  2. ^ "QR Code Essentials". Denso ADC. 2011. Archived from the original on 12 May 2013. Retrieved 12 March 2013. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  3. Borko Furht (2011). Handbook of Augmented Reality. Springer. p. 341. ISBN 9781461400646. Archived from the original on 21 December 2016. {{cite book}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  4. Joe Waters. "How to Use the Top QR Code Generators". Dummies.com. Archived from the original on 11 September 2017. Retrieved 5 June 2017. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  5. ^ "QR Code—About 2D Code". Denso-Wave. Archived from the original on 5 June 2016. Retrieved 27 May 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  6. ^ "QR Code Standardization". QR Code.com. Denso-Wave. Archived from the original on 10 May 2016. Retrieved 23 May 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  7. "ISS QR Code|AIM Store: Historical Archive". Aimglobal.org. Archived from the original on 8 August 2016. Retrieved 26 May 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  8. "ISO/IEC 18004:2006 - Information technology  – Automatic identification and data capture techniques  – QR Code 2005 bar code symbology specification". www.iso.org. Archived from the original on 8 March 2017. Retrieved 7 March 2017. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  9. "Synchronization with Native Applications". NTT DoCoMo. Archived from the original on 6 August 2016. Retrieved 26 May 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  10. Sean Owen (17 January 2014). "Barcode contents". Archived from the original on 15 February 2016. Retrieved 26 May 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  11. Rimma Kats (23 January 2012). "Starbucks promotes coffee blend via QR codes". Archived from the original on 3 June 2016. Retrieved 26 May 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  12. Jenny Lee (4 January 2012). "Tesco's cool QR code advertising campaign". Archived from the original on 3 June 2016. Retrieved 26 May 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  13. "Getting Started with Infographics (deprecated)". google-developers.appspot.com. 26 May 2015. Archived from the original on 29 June 2016. Retrieved 27 May 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  14. "QR Code Readers for iPhone, Android, Blackberry and Windows Phone 7". Archived from the original on 25 August 2011. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  15. "QR codes on China's train tickets may leak personal information". Want China Times. Archived from the original on 12 December 2013. Retrieved 16 March 2013. {{cite news}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  16. "Geo Tagged QR Code Map". Archived from the original on 30 May 2016. Retrieved 27 May 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  17. Novak, Asami (23 March 2008). "Japanese Gravestones Memorialize the Dead With QR Codes". Wired. Archived from the original on 15 February 2013. Retrieved 8 May 2013. {{cite news}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  18. Skepticality (5 July 2011). "Paranormality". Skepticality.com. Archived from the original on 3 July 2015. Retrieved 27 June 2015. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  19. "Herdenkingsmunt met QR code volop in het nieuws!" [Commemorative QR code in the news!]. Koninklijke Nederlandse Munt (in Dutch). 21 June 2011. Archived from the original on 29 June 2016. Retrieved 27 May 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  20. "New ₦100 Commemorative Centenary Celebration". Archived from the original on 8 September 2015. Retrieved 10 September 2015. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  21. www.ETRetail.com. "With IndiaQR launch, retail payments to get digital edge - ET Retail". ETRetail.com. Archived from the original on 15 February 2017. Retrieved 15 February 2017. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  22. "IndiaQR to debut on Feb 20 - Times of India". The Times of India. Archived from the original on 16 February 2017. Retrieved 15 February 2017. {{cite news}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  23. "16 August 2011". Archived from the original on 5 April 2016. Retrieved 27 May 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  24. "Tesco QR Code Virtual Store". 14 April 2012. Archived from the original on 25 May 2016. Retrieved 26 May 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  25. Sebastián Campanario (16 September 2011). "Marketing futurista: ya se puede comprar con la cámara del celular" [Futuristic marketing: it's already possible to purchase with a cellphone's camera] (in Spanish). Archived from the original on 23 September 2011. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  26. "Marketers scatter phone-friendly codes across ads". 11 November 2010. Retrieved 26 May 2016.
  27. "Top 10 QR Code Store examples". 14 April 2012. Archived from the original on 6 June 2016. Retrieved 26 May 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  28. "SCVNGR Unveils QR Code Payment System". Archived from the original on 8 December 2012. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  29. "MasterCard starts piloting QkR mobile payment app". Archived from the original on 8 January 2014. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  30. "WeChat Pay". {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  31. "PayTM". {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  32. "Standard - Formát pro sdílení platebních údajů v rámci tuzemského platebního styku v CZK prostřednictvím QR kódů" [Standard No. 26: Format for exchanging payment information for Czech domestic payments using QR codes] (in Czech). Czech Banking Association. November 2012. Archived from the original on 3 June 2016. Retrieved 27 May 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  33. "FAQ - Bitcoin". Archived from the original on 5 September 2015. Retrieved 10 September 2015. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  34. "Blockchain.info - Bitcoin Wallet - Features". Archived from the original on 6 September 2015. Retrieved 10 September 2015. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  35. "Google testing login authentication via QR codes". Archived from the original on 15 June 2013. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  36. "Share your Wi-Fi SSID & Password using a QR Code".
  37. "Barcode Contents".
  38. "モノウォッチは生まれ変わります". Archived from the original on 13 November 2015. Retrieved 10 September 2015. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  39. Michael Keferl (20 March 2008). "QR code graves give a "Memorial Window"". Japan Trends. Archived from the original on 2 May 2012.
  40. "供養の窓 - 石の声 株式会社" (in Japanese). Archived from the original on 13 November 2015. Retrieved 10 September 2015. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  41. "Quiring Monuments adds smartphone codes to gravestones". Puget Sound Business Journal. 26 April 2011. Archived from the original on 23 June 2015. Retrieved 10 September 2015. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  42. "Uruguayan Jewish Cemetery QR-ified" (in Spanish). EL PAIS. 24 March 2014. Archived from the original on 3 August 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  43. "Mumbai University to use QR code for Degree certificates". Google. 3 March 2018. Retrieved 5 September 2011.
  44. "Anti-forgery degree certificates". Google. 3 March 2018. Retrieved 5 September 2011.
  45. "Degree Certificate Authentication using QR Code and Smartphone". Google. 4 May 2018. Retrieved 4 May 2018.
  46. "Generic Mark Certificate Verification System using 2D QR Barcode". Google. 4 May 2018. Retrieved 4 May 2018.
  47. "Online Verification: Sinaloa Secretaría de Educación Pública y Cultura (Mexico)". Google. 4 May 2018. Retrieved 4 May 2018.
  48. "New Dimension of Preventing Fraudulent Academic Credentials Faculty of Graduate Studies, Mahidol University announces its first launch of a pilot system, called "QR Code Transcript Verification System"". Google. 4 May 2018. Retrieved 4 May 2018.
  49. "New generation of digital academic-transcripts using encrypted QR code™: Use of encrypted QR code™ in mark-sheets (academic transcripts)". IEEE. 3 March 2018. Retrieved 3 March 2018.
  50. "Confidential Encrypted Data Hiding and Retrieval Using QR Authentication System". IEEE. 3 March 2018. Retrieved 3 March 2018.
  51. "QR Barcode Easy". Google. 3 March 2018. Archived from the original on 15 September 2012. Retrieved 3 March 2018. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  52. "Encrypted QR Codes". QR Droid. 3 March 2018. Archived from the original on 17 September 2011. Retrieved 3 March 2018. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  53. "Encrypted QR Code Project on GitHub". {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  54. Dey, Somdip (3 March 2018). "SD-EQR: A New Technique To Use QR CodesTM in Cryptography: Use of QR CodesTM In Data Hiding and Securing". arXiv:1205.4829 .
  55. "Advanced Steganography Algorithm Using Randomized Intermediate QR Host Embedded With Any Encrypted Secret Message: ASA_QR Algorithm". 3 March 2018. Retrieved 3 March 2018.
  56. "Somdip Dey's Google Scholar Profile". 3 March 2018. Retrieved 3 March 2018.
  57. "Procedure at port of entry/departure". Archived from the original on 14 November 2016. Retrieved 31 October 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  58. "QR Code Usage In Japan". Studio Cliffano. 18 May 2009. Archived from the original on 21 August 2009. Retrieved 18 May 2009. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  59. "Archived copy". Archived from the original on 24 February 2017. Retrieved 23 February 2017. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)CS1 maint: archived copy as title (link)
  60. "Archived copy". Archived from the original on 24 February 2017. Retrieved 23 February 2017. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)CS1 maint: archived copy as title (link)
  61. "Information capacity and versions of QR Code". Denso-Wave. Archived from the original on 29 May 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  62. "2D Barcode: QR-Code". Archived from the original on 15 September 2012. — TEC-IT
  63. Orli Sharaby (18 October 2010). "Form Meets Function: Extreme Makeover QR Code Edition". Archived from the original on 8 July 2012. Retrieved 29 July 2011.
  64. Hamilton Chan (18 April 2011). "HOW TO: Make Your QR Codes More Beautiful". Archived from the original on 10 July 2012. Retrieved 29 July 2011.
  65. Russ Cox (12 April 2012). "QArt Codes: How to make pictures with QR codes, part II". Archived from the original on 21 March 2015. Retrieved 8 May 2015.
  66. Russ Cox (12 April 2012). "QArt Coder". Archived from the original on 24 April 2015. Retrieved 8 May 2015. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  67. ISO/IEC 18004:2006(E) § 6.4 Data encoding; Table 3 — Number of bits in character count indicator for QR Code 2005
  68. Information technology — Automatic identification and data capture techniques — QR Code 2005 bar code symbology specification, ISO/IEC 18004:2006 cor. 2009, pages 3, 6.
  69. "QR Code Overview & Progress of QR Code Applications" (PDF). Archived from the original (PDF) on 20 May 2013. Retrieved 26 June 2014. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  70. "iQR Code - QRcode.com - DENSO WAVE". Archived from the original on 7 September 2015. Retrieved 10 September 2015. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  71. "SQRC". qrcode.com. Retrieved 26 December 2017.
  72. "Frame QR". qrcode.com. Retrieved 26 December 2017.
  73. ^ "About the patent". Denso-Wave. Archived from the original on 25 June 2016. Retrieved 26 June 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  74. "DPA"."INPI". Archived from the original on 13 August 2016. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)"UK IPO".
  75. "QR Code.com". Denso-Wave. 6 November 2003. Archived from the original on 15 September 2012. Retrieved 23 April 2009.
  76. "UK QR Code Trademark". Archived from the original on 15 September 2012.
  77. "EU QR Code Trademark". Archived from the original on 15 September 2012.
  78. "US QR Code Trademark". Archived from the original on 15 September 2012.
  79. ^ "Jargon Watch", Wired, vol. 20, no. 1, p. 22, January 2012.
  80. "Malicious Images: What's a QR Code". SANS Technology Institute. 3 August 2011. Archived from the original on 13 July 2012. Retrieved 31 August 2011.
  81. "Barcode Scanner". Google. 1 June 2011. Archived from the original on 15 September 2012. Retrieved 31 August 2011.
  82. "QR Droid". Google. 19 August 2011. Archived from the original on 15 September 2012. Retrieved 31 August 2011.
  83. "ScanLife Barcode Reader". Google. 24 May 2011. Archived from the original on 15 September 2012. Retrieved 31 August 2011.
  84. "Consumer Alert: QR Code Safety". Better Business Bureau. 23 June 2011. Archived from the original on 15 July 2012. Retrieved 31 August 2011.
  85. "AVG Cautions: Beware of Malicious QR Codes". PC World. 28 June 2011. Archived from the original on 7 September 2012. Retrieved 31 August 2011.
  86. "EvilQR – When QRCode goes bad". AppSec-Labs Blog. 14 August 2011. Archived from the original on 15 September 2012. Retrieved 31 August 2011.
  87. "QR Codes: A Recipe for a Mobile Malware Tsunami". Cyveillance, Inc. 20 October 2010. Archived from the original on 28 July 2012. Retrieved 31 August 2011.
  88. QR Codes hold up to 2.9 KB whereas the smallest known computer virus is about one-tenth that size "The Smallest Virus I Could Manage". Virus Labs and Distribution. 1995. Archived from the original on 15 September 2012. Retrieved 31 August 2011.
  89. "Beware of Malicious QR Codes". ABC. 8 June 2011. Archived from the original on 1 August 2012. Retrieved 31 August 2011.
  90. 2D Color Barcodes for Mobile Phones Archived 4 March 2016 at the Wayback Machine
  91. Reliability and data density in high capacity color barcodes Archived 24 July 2015 at the Wayback Machine
  92. "Color classifiers for 2D color barcodes" (PDF). Fedcsis.org. 2013. Archived from the original (PDF) on 24 July 2015. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)

Bibliography

External links


Barcodes
Linear barcodes
UPC-A
MaxiCode
Post office barcodes
2D barcodes (stacked)
2D barcodes (matrix)
Polar coordinate barcodes
Other
Technological issues
Other data tags
Related topics
ISO standards by standard number
List of ISO standardsISO romanizationsIEC standards
1–9999
10000–19999
20000–29999
30000+
Categories:
QR code: Difference between revisions Add topic