Misplaced Pages

Freeman Dyson: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 17:52, 28 February 2020 edit142.164.240.6 (talk) About DysonTag: removal of Category:Living People← Previous edit Revision as of 17:52, 28 February 2020 edit undo142.164.240.6 (talk) About DysonNext edit →
Line 381: Line 381:
] ]
] ]
]
] ]
] ]

Revision as of 17:52, 28 February 2020

Freeman DysonFRS
Dyson at the Long Now Seminar in San Francisco, California, in 2005
BornFreeman John Dyson
(1923-12-15) 15 December 1923 (age 101)
Crowthorne, Berkshire, England
DiedFebruary 28, 2020(2020-02-28) (aged 96)
NationalityAmerican
Alma mater
Known for
Spouse(s) Verena Huber-Dyson ​ ​(m. 1950; div. 1958)
Imme Jung ​(m. 1958)
ChildrenEsther Dyson, George Dyson, Dorothy Dyson, Mia Dyson, Rebecca Dyson, Emily Dyson
Awards
Scientific career
FieldsPhysics, mathematics
Institutions
Academic advisorsHans Bethe
Websitewww.sns.ias.edu/dyson
Notes
He is the son of George Dyson.
Quantum field theory
Feynman diagram
History
Background
Symmetries
Tools
Equations
Standard Model
Incomplete theories
Scientists


Modern physics
H ^ | ψ n ( t ) = i d d t | ψ n ( t ) {\displaystyle {\hat {H}}|\psi _{n}(t)\rangle =i\hbar {\frac {d}{dt}}|\psi _{n}(t)\rangle }
G μ ν + Λ g μ ν = κ T μ ν {\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }} Schrödinger and Einstein field equations
Founders
Concepts
Branches
Scientists
Categories

Freeman John Dyson FRS (15 December 1923 - 28 February 2020) was an American theoretical physicist and mathematician, of British origin, known for his work in quantum electrodynamics, solid-state physics, astronomy and nuclear engineering. He is professor emeritus in the Institute for Advanced Study in Princeton, a member of the Board of Visitors of Ralston College and a member of the Board of Sponsors of the Bulletin of the Atomic Scientists.

Dyson originated several concepts that bear his name, such as Dyson's transform, a fundamental technique in additive number theory, which he developed as part of his proof of Mann's theorem; the Dyson tree, a hypothetical genetically-engineered plant capable of growing in a comet; the Dyson series, a perturbative series where each term is represented by Feynman diagrams; the Dyson sphere, a thought experiment that attempts to explain how a space-faring civilization would meet its energy requirements with a hypothetical megastructure that completely encompasses a star and captures a large percentage of its power output; and Dyson's eternal intelligence, a means by which an immortal society of intelligent beings in an open universe could escape the prospect of the heat death of the universe by extending subjective time to infinity while expending only a finite amount of energy. Dyson believes global warming is caused by increased carbon dioxide through burning fossil fuels but that some of the effects of this are favourable and not taken into account by climate scientists, such as increased agricultural yield. He is skeptical about the simulation models used to predict climate change, arguing that political efforts to reduce causes of climate change distract from other global problems that should take priority.

Biography

Early life

Born on 15 December 1923, at Crowthorne in Berkshire, England, Dyson is the son of the composer George Dyson, who was later knighted. His mother had a law degree, and after Dyson was born she worked as a social worker. Dyson had one sibling, his older sister, Alice, who remembered him as a boy surrounded by encyclopedias and always calculating on sheets of paper. At the age of four he tried to calculate the number of atoms in the sun. As a child, he showed an interest in large numbers and in the solar system, and was strongly influenced by the book Men of Mathematics by Eric Temple Bell. Politically, Dyson says he was "brought up as a socialist".

From 1936 to 1941 Dyson was a scholar at Winchester College, where his father was Director of Music. At age 17 he studied mathematics with G.H. Hardy at Trinity College, Cambridge (where he won a scholarship at age 15) and at age 19 was assigned to war work in the Operational Research Section (ORS) of the Royal Air Force's Bomber Command, where he developed analytical methods for calculating the ideal density for bomber formations to help the Royal Air Force bomb German targets during the Second World War. After the war, Dyson was readmitted to Trinity College, Cambridge, where he obtained a BA degree in mathematics. From 1946 to 1949 he was a Fellow of his college, occupying rooms just below those of the philosopher Ludwig Wittgenstein, who resigned his professorship in 1947. In 1947 Dyson published two papers in number theory. Friends and colleagues describe him as shy and self-effacing, with a contrarian streak that his friends find refreshing but his intellectual opponents find exasperating. "I have the sense that when consensus is forming like ice hardening on a lake, Dyson will do his best to chip at the ice", Steven Weinberg said of him. His friend the neurologist and author Oliver Sacks said: "A favourite word of Freeman's about doing science and being creative is the word 'subversive'. He feels it's rather important not only to be not orthodox, but to be subversive, and he's done that all his life."

Career in the United States

On G. I. Taylor's advice and recommendation, Dyson moved to the United States in 1947 as a Commonwealth Fellow to earn a physics doctorate with Hans Bethe at Cornell University (1947–48). There he made the acquaintance of Richard Feynman. The budding English physicist recognized the brilliance of the flamboyant American and worked with him. He then moved to the Institute for Advanced Study (1948–49), before returning to England (1949–51), where he was a research fellow at the University of Birmingham. In 1949 Dyson demonstrated the equivalence of two formulations of quantum electrodynamics (QED): Richard Feynman's diagrams and the operator method developed by Julian Schwinger and Shin'ichirō Tomonaga. He was the first person after their creator to appreciate the power of Feynman diagrams and his paper written in 1948 and published in 1949 was the first to make use of them. He said in that paper that Feynman diagrams were not just a computational tool but a physical theory and developed rules for the diagrams that completely solved the renormalization problem. Dyson's paper and also his lectures presented Feynman's theories of QED in a form that other physicists could understand, facilitating the physics community's acceptance of Feynman's work. J. Robert Oppenheimer, in particular, was persuaded by Dyson that Feynman's new theory was as valid as Schwinger's and Tomonaga's. Oppenheimer rewarded Dyson with a lifetime appointment at the Institute for Advanced Study, "for proving me wrong", in Oppenheimer's words.

Also in 1949, in related work, Dyson invented the Dyson series. It was this paper that inspired John Ward to derive his celebrated Ward–Takahashi identity.

In 1951 Dyson joined the faculty at Cornell as a physics professor, though he still had no doctorate, and in 1953 he received a permanent post at the Institute for Advanced Study in Princeton, New Jersey, where he has remained.

From 1957 to 1961 Dyson worked on Project Orion, which proposed the possibility of space-flight using nuclear pulse propulsion. A prototype was demonstrated using conventional explosives, but the 1963 Partial Test Ban Treaty, which Dyson was involved in and supported, permitted only underground nuclear weapons testing, so the project was abandoned.

In 1958 Dyson was a member of the design team under Edward Teller for TRIGA, a small, inherently safe nuclear reactor used throughout the world in hospitals and universities for the production of medical isotopes.

A seminal paper by Dyson came in 1966, when, together with Andrew Lenard and independently of Elliott H. Lieb and Walter Thirring, he proved rigorously that the Pauli exclusion principle plays the main role in the stability of bulk matter. Hence it is not the electromagnetic repulsion between outer-shell orbital electrons that prevents two stacked wood blocks from coalescing into a single piece, but the exclusion principle applied to electrons and protons that generates the classical macroscopic normal force. In condensed matter physics, Dyson also analysed the phase transition of the Ising model in 1 dimension and spin waves.

Dyson also did work in a variety of topics in mathematics, such as topology, analysis, number theory and random matrices. In 1973 the number theorist Hugh Lowell Montgomery was visiting the Institute for Advanced Study and had just made his pair correlation conjecture concerning the distribution of the zeros of the Riemann zeta function. He showed his formula to the mathematician Atle Selberg, who said that it looked like something in mathematical physics and that Montgomery should show it to Dyson, which he did. Dyson recognized the formula as the pair correlation function of the Gaussian unitary ensemble, which physicists have studied extensively. This suggested that there might be an unexpected connection between the distribution of primes (2, 3, 5, 7, 11,  ...) and the energy levels in the nuclei of heavy elements such as uranium.

Around 1979 Dyson worked with the Institute for Energy Analysis on climate studies. This group, under Alvin Weinberg's direction, pioneered multidisciplinary climate studies, including a strong biology group. Also during the 1970s, Dyson worked on climate studies conducted by the JASON defense advisory group.

Dyson retired from the Institute for Advanced Study in 1994. In 1998 he joined the board of the Solar Electric Light Fund. As of 2003 he was president of the Space Studies Institute, the space research organization founded by Gerard K. O'Neill; as of 2013 he is on its board of trustees. Dyson is a longtime member of the JASON group.

Dyson has won numerous scientific awards, but never a Nobel Prize. Nobel physics laureate Steven Weinberg has said that the Nobel committee has "fleeced" Dyson, but Dyson himself remarked in 2009, "I think it's almost true without exception if you want to win a Nobel Prize, you should have a long attention span, get hold of some deep and important problem and stay with it for ten years. That wasn't my style." Dyson is a regular contributor to The New York Review of Books.

In 2012 Dyson published (with William H. Press) a fundamental new result about the prisoner's dilemma in the Proceedings of the National Academy of Sciences of the United States of America.

Family

With his first wife, the Swiss mathematician Verena Huber-Dyson, Dyson had two children, Esther and George. In 1958 he married Imme Jung (born 1936), a masters runner, and they had four more children, Dorothy, Mia, Rebecca, and Emily Dyson.

Dyson's eldest daughter, Esther, is a digital technology consultant and investor; she has been called "the most influential woman in all the computer world". His son, George, is a historian of science, one of whose books is Project Orion: The Atomic Spaceship 1957–1965.

Concepts

Biotechnology and genetic engineering

See also: The Sun, the Genome and the Internet

Dyson admits his record as a prophet is mixed, but thinks it is better to be wrong than vague, and that in meeting the world's material needs, technology must be beautiful and cheap.

My book The Sun, the Genome, and the Internet (1999) describes a vision of green technology enriching villages all over the world and halting the migration from villages to megacities. The three components of the vision are all essential: the sun to provide energy where it is needed, the genome to provide plants that can convert sunlight into chemical fuels cheaply and efficiently, the Internet to end the intellectual and economic isolation of rural populations. With all three components in place, every village in Africa could enjoy its fair share of the blessings of civilization.

Dyson has coined the term "green technologies", based on biology instead of physics or chemistry, to describe new species of microorganisms and plants designed to meet human needs. He argues that such technologies would be based on solar power rather than the fossil fuels whose use he sees as part of what he calls "gray technologies" of industry. He believes that genetically engineered crops, which he describes as green, can help end rural poverty, with a movement based in ethics to end the inequitable distribution of wealth on the planet.

The Origin of Life

Main article: Abiogenesis

Dyson favors the dual origin theory: that life first formed as cells, then enzymes, and finally, much later, genes. This was first propounded by the Russian Alexander Oparin. J. B. S. Haldane developed the same theory independently. In Dyson's version of the theory life evolved in two stages, widely separated in time. Because of the biochemistry he regards it as too unlikely that genes could have developed fully blown in one process. Current cells contain adenosine triphosphate or ATP and adenosine 5'-monophosphate or AMP, which greatly resemble each other but have completely different functions. ATP transports energy around the cell, and AMP is part of RNA and the genetic apparatus. Dyson proposes that in a primitive early cell containing ATP and AMP, RNA and replication were invented accidentally because of the similarity between AMP and RNA. He suggests that AMP was produced when ATP molecules lost two of their phosphate radicals, and then one cell somewhere performed Eigen's experiment and produced RNA.

There is no direct evidence for the dual origin theory, because once genes developed, they took over, obliterating all traces of the earlier forms of life. In the first origin, the cells were probably just drops of water held together by surface tension, teeming with enzymes and chemical reactions, and having a primitive kind of growth or replication. When the liquid drop became too big, it split into two drops. Many complex molecules formed in these "little city economies" and the probability that genes would eventually develop in them was much greater than in the prebiotic environment.

Artist's concept of Dyson rings, forming a stable Dyson swarm, or "Dyson sphere"

Dyson sphere

Main article: Dyson sphere

In 1960 Dyson wrote a short paper for the journal Science titled "Search for Artificial Stellar Sources of Infrared Radiation". In it he speculated that a technologically advanced extraterrestrial civilization might surround its native star with artificial structures to maximize the capture of the star's energy. Eventually the civilization would enclose the star, intercepting electromagnetic radiation with wavelengths from visible light downward and radiating waste heat outward as infrared radiation. One method of searching for extraterrestrial civilizations would be to look for large objects radiating in the infrared range of the electromagnetic spectrum.

One should expect that, within a few thousand years of its entering the stage of industrial development, any intelligent species should be found occupying an artificial biosphere which surrounds its parent star.

Dyson conceived that such structures would be clouds of asteroid-sized space habitats, though science fiction writers have preferred a solid structure: either way, such an artefact is often called a Dyson sphere, although Dyson used the term "shell". Dyson says that he used the term "artificial biosphere" in the article to mean a habitat, not a shape. The general concept of such an energy-transferring shell had been advanced decades earlier by author Olaf Stapledon in his 1937 novel Star Maker, a source Dyson has credited publicly.

Dyson tree

Main article: Dyson tree

Dyson has also proposed the creation of a Dyson tree, a genetically engineered plant capable of growing on a comet. He suggested that comets could be engineered to contain hollow spaces filled with a breathable atmosphere, thus providing self-sustaining habitats for humanity in the outer Solar System.

Plants could grow greenhouses ... just as turtles grow shells and polar bears grow fur and polyps build coral reefs in tropical seas. These plants could keep warm by the light from a distant Sun and conserve the oxygen that they produce by photosynthesis. The greenhouse would consist of a thick skin providing thermal insulation, with small transparent windows to admit sunlight. Outside the skin would be an array of simple lenses, focusing sunlight through the windows into the interior ... Groups of greenhouses could grow together to form extended habitats for other species of plants and animals.

Space colonies

I've done some historical research on the costs of the Mayflower's voyage, and on the Mormons' emigration to Utah, and I think it's possible to go into space on a much smaller scale. A cost on the order of $40,000 per person would be the target to shoot for; in terms of real wages, that would make it comparable to the colonization of America. Unless it's brought down to that level it's not really interesting to me, because otherwise it would be a luxury that only governments could afford.

Dyson has been interested in space travel since he was a child, reading such science fiction classics as Olaf Stapledon's Star Maker. As a young man, he worked for General Atomics on the nuclear-powered Orion spacecraft. He hoped Project Orion would put men on Mars by 1965, Saturn by 1970. For a quarter-century Dyson has been unhappy about how the government conducts space travel:

The problem is, of course, that they can't afford to fail. The rules of the game are that you don't take a chance, because if you fail, then probably your whole program gets wiped out.

Dyson still hopes for cheap space travel, but is resigned to waiting for private entrepreneurs to develop something new and inexpensive.

No law of physics or biology forbids cheap travel and settlement all over the solar system and beyond. But it is impossible to predict how long this will take. Predictions of the dates of future achievements are notoriously fallible. My guess is that the era of cheap unmanned missions will be the next fifty years, and the era of cheap manned missions will start sometime late in the twenty-first century. Any affordable program of manned exploration must be centered in biology, and its time frame tied to the time frame of biotechnology; a hundred years, roughly the time it will take us to learn to grow warm-blooded plants, is probably reasonable.

Dyson also proposed the use of bioengineered space colonies to colonize the Kuiper Belt on the outer edge of our Solar System. He proposed that habitats could be grown from space hardened spores. The colonies could then be warmed by large reflector plant leaves that could focus the dim, distant sunlight back on the growing colony. This was illustrated by Pat Rawlings on the cover of the National Space Society's Ad Astra magazine.

Space exploration

A direct search for life in Europa's ocean would today be prohibitively expensive. Impacts on Europa give us an easier way to look for evidence of life there. Every time a major impact occurs on Europa, a vast quantity of water is splashed from the ocean into the space around Jupiter. Some of the water evaporates, and some condenses into snow. Creatures living in the water far enough from the impact have a chance of being splashed intact into space and quickly freeze-dried. Therefore, an easy way to look for evidence of life in Europa's ocean is to look for freeze-dried fish in the ring of space debris orbiting Jupiter. Freeze-dried fish orbiting Jupiter is a fanciful notion, but nature in the biological realm has a tendency to be fanciful. Nature is usually more imaginative than we are. ... To have the best chance of success, we should keep our eyes open for all possibilities.

Dyson's eternal intelligence

Main article: Dyson's eternal intelligence

Dyson proposed that an immortal group of intelligent beings could escape the prospect of heat death by extending time to infinity while expending only a finite amount of energy. This is also known as the Dyson scenario.

Dyson's transform

Main article: Dyson's transform

His concept "Dyson's transform" led to one of the most important lemmas of Olivier Ramaré's theorem: that every even integer can be written as a sum of no more than six primes.

Dyson series

The Dyson series, the formal solution of an explicitly time-dependent Schrödinger equation by iteration, and the corresponding Dyson time-ordering operator T , {\displaystyle {\mathcal {T}}\,,} an entity of basic importance in the mathematical formulation of quantum mechanics, are also named after Dyson.

Freeman Dyson in 2007 at the Institute for Advanced Study

Quantum physics and prime numbers

Dyson and Hugh Montgomery discovered an intriguing connection between quantum physics and Montgomery's pair correlation conjecture about the zeros of the Zeta function. The primes 2, 3, 5, 7, 11, 13, 17, 19, ... are described by the Riemann Zeta function, and Dyson had previously developed a description of quantum physics based on m by m arrays of totally random numbers. Montgomery and Dyson discovered that the eigenvalues of these matrices are spaced apart in exactly the same manner as Montgomery conjectured for the nontrivial zeros of the Zeta function. Andrew Odlyzko has verified the conjecture on a computer, using his Odlyzko–Schönhage algorithm to calculate many zeros. Dyson recognized this connection because of a number-theory question Montgomery asked him. Dyson had published results in number theory in 1947, while a Fellow at Trinity College, Cambridge, and so was able to understand Montgomery's question. If Montgomery had not been visiting the Institute for Advanced Study that week, this connection might not have been discovered.

There are in nature one, two, and three dimensional quasicrystals. Mathematicians define a quasicrystal as a set of discrete points whose Fourier transform is also a set of discrete points. Odlyzko has done extensive computations of the Fourier transform of the nontrivial zeros of the Zeta function, and they seem to form a one-dimensional quasicrystal. This would in fact follow from the Riemann hypothesis.

Rank of a partition

The rank of a partition, shown as its Young diagram
Main article: Rank of a partition

In number theory and combinatorics rank of a partition of a positive integer is a certain integer associated with the partition. Dyson introduced the concept in a paper published in the journal Eureka. It was presented in the context of a study of certain congruence properties of the partition function discovered by the mathematician Srinivasa Ramanujan. A different concept, sharing the same name, is used in combinatorics, where the rank is taken to be the size of the Durfee square of the partition.

Crank of a partition

Main article: Crank of a partition

In number theory, the crank of a partition is a certain integer associated with the partition in number theory. Dyson first introduced the term without a definition in a 1944 paper in a journal published by the Mathematics Society of Cambridge University. He then gave a list of properties this yet-to-be-defined quantity should have. In 1988, George E. Andrews and Frank Garvan discovered a definition for the crank satisfying the properties Dyson had hypothesized.

Astrochicken

Main article: Astrochicken

Astrochicken is the name given to a thought experiment Dyson expounded in his book Disturbing the Universe (1979). He contemplated how humanity could build a small, self-replicating automaton that could explore space more efficiently than a manned craft could. He attributed the general idea to John von Neumann, based on a lecture von Neumann gave in 1948 titled The General and Logical Theory of Automata. Dyson expanded on von Neumann's automata theories and added a biological component.

Projects Dyson collaborated on

Lumpers and splitters

John von Neumann
Main article: Lumpers and splitters

Dyson has suggested that philosophers can be broadly, if simplistically, divided into splitters and lumpers. These roughly correspond to materialists, who imagine the world divided into atoms, and Platonists, who regard it as made up of ideas.

Helios

Main article: Helios (propulsion system)

Helios is a design for a spacecraft propulsion system in which small (0.1 kiloton) nuclear bombs would be detonated in a chamber roughly 30 feet (9.1 m) in diameter. Water would be injected into the chamber, superheated by the explosion and expelled for thrust. The Helios propulsion system was conceived originally by Dyson.

Views

Climate change

See also: Climatology

Dyson agrees that anthropogenic global warming exists and that one of its main causes is the increase of carbon dioxide in the atmosphere resulting from the burning of fossil fuels. He has said that in many ways increased atmospheric carbon dioxide is beneficial, and that it is increasing biological growth, agricultural yields and forests. He believes that existing simulation models of climate change fail to account for some important factors, and that the results thus contain too great a margin of error to reliably predict future trends.

Dyson's views on global warming have been criticized. Climate scientist James Hansen said that Dyson "doesn't know what he's talking about.... If he's going to wander into something with major consequences for humanity and other life on the planet, then he should first do his homework—which he obviously has not done on global warming." Dyson replied that "y objections to the global warming propaganda are not so much over the technical facts, about which I do not know much, but it's rather against the way those people behave and the kind of intolerance to criticism that a lot of them have."

In 2008 Dyson endorsed the now common usage of "global warming" as synonymous with global anthropogenic climate change, but argued that political efforts to reduce the causes of climate change distract from other global problems that should take priority.

Since originally taking interest in climate studies in the 1970s, Dyson has suggested that carbon dioxide levels in the atmosphere could be controlled by planting fast-growing trees. He calculates that it would take a trillion trees to remove all carbon from the atmosphere. In a 2014 interview he said, "What I'm convinced of is that we don't understand climate ... It will take a lot of very hard work before that question is settled."

Dyson is a member of the academic advisory council of the Global Warming Policy Foundation, a climate sceptic think tank chaired by Nigel Lawson. He has compared belief in climate change to religion.

Warfare and weapons

At the British Bomber Command, Dyson and colleagues proposed removing two gun turrets from the RAF Lancaster bombers, to cut the catastrophic losses due to German fighters in the Battle of Berlin. A Lancaster without turrets could fly 50 mph (80 km/h) faster and be much more maneuverable.

All our advice to the commander in chief through the chief of our section, who was a career civil servant. His guiding principle was to tell the commander in chief things that the commander in chief liked to hear ... To push the idea of ripping out gun turrets, against the official mythology of the gallant gunner defending his crew mates ... was not the kind of suggestion the commander in chief liked to hear.

On hearing the news of the bombing of Hiroshima:

I agreed emphatically with Henry Stimson. Once we had got ourselves into the business of bombing cities, we might as well do the job competently and get it over with. I felt better that morning than I had felt for years ... Those fellows who had built the atomic bombs obviously knew their stuff ... Later, much later, I would remember .

I am convinced that to avoid nuclear war it is not sufficient to be afraid of it. It is necessary to be afraid, but it is equally necessary to understand. And the first step in understanding is to recognize that the problem of nuclear war is basically not technical but human and historical. If we are to avoid destruction we must first of all understand the human and historical context out of which destruction arises.

In 1967, in his capacity as a military adviser, Dyson wrote an influential paper on the issue of possible US use of tactical nuclear weapons in the Vietnam War. When a general said in a meeting, "I think it might be a good idea to throw in a nuke now and then, just to keep the other side guessing ..." Dyson became alarmed and obtained permission to write a report on the pros and cons of using such weapons from a purely military point of view. (This report, Tactical Nuclear Weapons in Southeast Asia, published by the Institute for Defense Analyses, was obtained, with some redactions, by the Nautilus Institute for Security and Sustainability under the Freedom of Information act in 2002.) It was sufficiently objective that both sides in the debate based their arguments on it. Dyson says that the report showed that, even from a narrow military point of view, the US was better off not using nuclear weapons. Dyson stated on the Dick Cavett show that the use of nuclear weaponry was a bad idea for the US at the time because "our targets were large and theirs were small." (His unstated assumption was that the Soviets would respond by supplying tactical nukes to the other side.)

Dyson opposed the Vietnam War, the Gulf War and the invasion of Iraq. He supported Barack Obama in the 2008 US presidential election and The New York Times has described him as a political liberal. He was one of 29 leading US scientists who wrote Obama a strongly supportive letter about his administration's 2015 nuclear deal with Iran.

Science and religion

Dyson was raised in what he has described as a “watered-down Church of England Christianity”. He is a nondenominational Christian and has attended various churches, from Presbyterian to Roman Catholic. Regarding doctrinal or Christological issues, he has said, "I am neither a saint nor a theologian. To me, good works are more important than theology."

Science and religion are two windows that people look through, trying to understand the big universe outside, trying to understand why we are here. The two windows give different views, but they look out at the same universe. Both views are one-sided, neither is complete. Both leave out essential features of the real world. And both are worthy of respect. Trouble arises when either science or religion claims universal jurisdiction, when either religious or scientific dogma claims to be infallible. Religious creationists and scientific materialists are equally dogmatic and insensitive. By their arrogance they bring both science and religion into disrepute. The media exaggerate their numbers and importance. The media rarely mention the fact that the great majority of religious people belong to moderate denominations that treat science with respect, or the fact that the great majority of scientists treat religion with respect so long as religion does not claim jurisdiction over scientific questions.

Dyson partially disagrees with the famous remark by his fellow physicist Steven Weinberg that "With or without religion, good people can behave well and bad people can do evil; but for good people to do evil—that takes religion."

Weinberg's statement is true as far as it goes, but it is not the whole truth. To make it the whole truth, we must add an additional clause: "And for bad people to do good things—that takes religion." The main point of Christianity is that it is a religion for sinners. Jesus made that very clear. When the Pharisees asked his disciples, "Why eateth your Master with publicans and sinners?" he said, "I come to call not the righteous but sinners to repentance." Only a small fraction of sinners repent and do good things but only a small fraction of good people are led by their religion to do bad things.

While Dyson has called himself a Christian, he identifies himself as agnostic about some of the specifics of his faith. For example, in reviewing The God of Hope and the End of the World by John Polkinghorne, Dyson wrote:

I am myself a Christian, a member of a community that preserves an ancient heritage of great literature and great music, provides help and counsel to young and old when they are in trouble, educates children in moral responsibility, and worships God in its own fashion. But I find Polkinghorne's theology altogether too narrow for my taste. I have no use for a theology that claims to know the answers to deep questions but bases its arguments on the beliefs of a single tribe. I am a practicing Christian but not a believing Christian. To me, to worship God means to recognize that mind and intelligence are woven into the fabric of our universe in a way that altogether surpasses our comprehension.

In The God Delusion (2006), biologist Richard Dawkins criticized Dyson for accepting the religious Templeton Prize in 2000: "It would be taken as an endorsement of religion by one of the world's most distinguished physicists." In 2000 Dyson declared that he is a (non-denominational) Christian, and he has disagreed with Dawkins on several occasions, as when he criticized Dawkins' understanding of evolution.

Named after Dyson

Honors and awards

Works

Books

External videos
video icon Freeman Dyson: Let's look for life in the outer solar system, TED Talks, February 2003
video icon Freeman Dyson 1 - My middle class upbringing, Web of Stories (1st of a series)
video icon Big Ideas: Freeman Dyson on Living Through Four Revolutions, TVO, 1 June 2011 at Perimeter Institute, Waterloo, Canada


Articles

  • "Freeman Dyson: By the Book". Sunday Book Review. The New York Times (Interview). 18 April 2015. p. 8.
  • "Birds and Frogs" – Notices of the American Mathematical Society, 2009

Documentaries

References

  1. ^ "Professor Freeman Dyson FRS". London: Royal Society. Archived from the original on 16 November 2015.
  2. ^ Lin, Thomas (31 March 2014). "At 90, Freeman Dyson Ponders His Next Challenge". Wired. Retrieved 2 April 2014.
  3. FREEMAN DYSON | School of Natural Sciences
  4. Dyson, Freeman. "Influences".
  5. Dyson, Freeman. "Alma Mater". Web of Stories.
  6. "Obituary of Verena Huber-Dyson". Moles Farewell Tributes. 12 March 2016. Archived from the original on 26 August 2016. Retrieved 3 December 2017.
  7. Dyson, F.J. (1979). Disturbing the Universe, p. 131, "I had finally become an American ... The decision to abjure my allegiance to Queen Elizabeth might have been a difficult one, but the Queen's ministers made it easy for me."
  8. "Scientist wins $1m religion prize". BBC News. 9 May 2000. Retrieved 2 May 2010.
  9. Ralston College. "Board of Visitors". Retrieved 24 October 2019.
  10. Board of Sponsors. Bulletin of the Atomic Scientists. Retrieved 3 December 2017.
  11. Additive Number Theory: Inverse Problems and the Geometry of Sumsets By Melvyn Bernard Nathanson, Springer, Aug 22, 1996, ISBN 0-387-94655-1, https://books.google.com/books?id=PqlQjNhjkKUC&dq=%22e-transform%22&source=gbs_navlinks_s, p. 42
  12. Halberstam, H.; Roth, K. F. (1983). Sequences (revised ed.). Berlin: Springer-Verlag. ISBN 978-0-387-90801-4.
  13. https://www.youtube.com/watch?v=BiKfWdXXfIs
  14. "The Scientist as Rebel". Retrieved 5 December 2017. Wild River Review Interview by Joy E. Stocke
  15. Freeman Dyson Turns 90 Published by lastwordonnothing.com on October 7, 2013, retrieved on April 22, 2019
  16. Freeman Dyson Published by rigaslaiks.com in the Summer of 2017, retrieved on April 22, 2019
  17. Ghodsee, Kristen (2015). The Left Side of History: World War II and the Unfulfilled Promise of Communism in Eastern Europe. Durham, NC: Duke University Press. p. 5. ISBN 978-0-822-35823-7.
  18. ^ Dyson, Freeman (1 November 2006). "A Failure of Intelligence". MIT Technology Review Magazine. MIT Technology Review. Retrieved 20 October 2013. Prominent physicist Freeman Dyson recalls the time he spent developing analytical methods to help the British Royal Air Force bomb German targets during World War II.
  19. The Danger of Cosmic Genius Published by The Atlantic in December 2010, retrieved on May 25, 2019
  20. Fractals in Physics: Essays in Honor of Benoit B. Mandelbrot : Proceedings of the International Conference Honoring Benoit B. Mandelbrot on His 65th Birthday, Vence, France, 1–4 October 1989, p. 66
  21. "Freeman Dyson". Institute for Advanced Study, School of Natural Sciences. Princeton University. Retrieved 15 April 2014.
  22. Dyson, F. (10 Nov 2011) "What Can You Really Know", New York Review of Books
  23. "The Approximation to Algebraic Numbers by Rationals," Acta Mathematica (Uppsala), 89, 1947, pp. 225–240.
  24. "On Simultaneous Diophantine Approximations," Proceedings of the London Mathematical Society, Series 2, 49, 1947, pp. 409–420.
  25. ^ Dawidoff, Nicholas (25 March 2009). "The Civil Heretic". The New York Times Magazine.
  26. Freeman Dyson (17 December 1986). "Freeman Dyson". Oral History Interviews (Interview). Interviewed by Finn Aaserud. Princeton, New Jersey: American Institute of Physics.
  27. Schweber, Silvan S. (1994). QED and the Men Who Made It. Princeton, NJ: Princeton University Press. pp. 392ff.
  28. "Freeman Dyson". The American Institute of Physics. Archived from the original on 17 October 2013. Retrieved 23 August 2013.
  29. Dyson, Freeman J. (1979). Disturbing the Universe. Basic Books. ISBN 978-0-465-01677-8.
  30. J. C. Ward (1950). "An Identity in Quantum Electrodynamics". Phys. Rev. 78 (2): 182. Bibcode:1950PhRv...78..182W. doi:10.1103/PhysRev.78.182..
  31. Our SpaceFlight Heritage: Project Orion, a nuclear bomb and rocket – all in one Published by SpaceFlight Insider on August 31, 2016, retrieved on April 25, 2019
  32. An Essay on Freeman Dyson, Designer of the TRIGA Reactor Published by wirebiters.com on October 7, 2014, retrieved on April 25, 2019
  33. E. H. Lieb, W. Thirring (1975). "Bound for the Kinetic Energy of Fermions Which Proves the Stability of Matter". Phys. Rev. Lett. 35 (11): 687–689. Bibcode:1975PhRvL..35..687L. doi:10.1103/PhysRevLett.35.687.
  34. ^ F. J. Dyson, E. H. Lieb, Selected papers by Freeman Dyson, AMS (1996).
  35. John Derbyshire, Prime Obsession, 2004, ISBN 0309085497.
  36. "InterViews Freeman Dyson". National Academy of Sciences. 23 July 2004. Archived from the original on 1 December 2017. Retrieved 19 December 2011.
  37. "Officers and Board". Space Studies Institute. Retrieved 6 January 2013.
  38. A new approach to the Prisoner's Dilemma Published by johnhawkes.net on July 8, 2012, retrieved on April 26, 2019
  39. Buford, Amby (30 March 2009). "Mar. 30: A Beautiful Couple: Imme and Freeman Dyson". Runner's World.
  40. McKelvey, Tara (27 May 2014). "Esther Dyson: Breaking through tech's glass ceiling". BBC. Retrieved 11 February 2017.
  41. See excerpt from Digerati: Encounters with the Cyber Elite Archived 10 February 2009 at the Wayback Machine by John Brockman (HardWired Books, 1996)
  42. Dyson, F. (19 July 2007) "Our Biotech Future", New York Review of Books. Retrieved on 2011-10-07.
  43. Freeman Dyson envisions biotech solutions to rural poverty Published by Stanford University on 16 March 2001, retrieved on May 1, 2019
  44. Oparin, A. I. The Origin of Life, Moscow Worker publisher, 1924 (Russian)
  45. The Origin of Life, J.B.S.Haldane, The Rationalist Annual, 1929
  46. Freeman Dyson, Origins of Life,,. Second Edition, Cambridge University Press, 1999
  47. Dyson, Freeman J. (3 June 1960). "Search for Artificial Stellar Sources of Infrared Radiation". Science. 131 (3414): 1667–1668. Bibcode:1960Sci...131.1667D. doi:10.1126/science.131.3414.1667. PMID 17780673.
  48. ^ Freeman Dyson (October 1978). "Freeman Dyson: Imagine …". OMNI (Interview). Interviewed by Monte Davis. Archived from the original on 1998-12-07. Retrieved 2006-12-17.
  49. 20 minutes into a video
  50. Dyson, Freeman (1 June 2011). Living Through Four Revolutions (Speech). Perimeter Institute Public Lecture Series. Waterloo, Ontario, Canada.
  51. Dyson, F.J. (1979). Disturbing the Universe, p. 211, "Some science fiction writers have wrongly given me the credit of inventing the artificial biosphere. In fact, I took the idea from Olaf Stapledon, one of their own colleagues"
  52. ^ Dyson, FJ, "Warm-blooded plants and freeze-dried fish: the future of space exploration. Played" The Atlantic Monthly, November 1997 Subscribers only
  53. Freeman J. Dyson, "Time without end: Physics and biology in an open universe," Reviews of Modern Physics, Vol. 51, Issue 3 (July 1979), pp. 447-460; doi:10.1103/RevModPhys.51.447
  54. Dyson, Freeman J. (1962). "A Brownian?Motion Model for the Eigenvalues of a Random Matrix". J. Math. Phys. 3 (6): 1191. Bibcode:1962JMP.....3.1191D. doi:10.1063/1.1703862.
  55. Freeman Dyson, Selected papers, 1990-2014, pp. 41–42, World Scientific, 2015
  56. F. Dyson (1944). "Some guesses in the theory of partitions". Eureka (Cambridge). 8: 10–15.
  57. Freeman J. Dyson (1944). "Some Guesses in The Theory of Partitions". Eureka (Cambridge). 8: 10–15. ISBN 9780821805619.
  58. George E. Andrews; F.G. Garvan (April 1988). "Dyson's crank of a partition" (PDF). Bulletin (New Series) of the American Mathematical Society. 18 (2). Retrieved 26 November 2012.
  59. Freeman Dyson, Dreams of Earth and Sky, New York Review Books, 2015, p. 238.
  60. Hadley, J.W.; Stubbs, T.F.; Janssen, M.A.; Simons, L.A. (1965). "Helios pulsed nuclear propulsion concept" (PDF). doi:10.2172/6761138. OSTI 6761138. {{cite journal}}: Cite journal requires |journal= (help)
  61. ^ Freeman Dyson (8 August 2007). "Heretical Thoughts about Science and Society". Edge. Retrieved 5 September 2007.dl
  62. The benefits of carbon dioxide Published by rationaloptimist.com on October 20, 2015, retrieved on May 1, 2019
  63. Video: Earth is actually growing greener Published by the Vancouver Sun on April 20, 2015, retrieved on May 1, 2019
  64. Dyson: Climate models are rubbish Published by theregister.co.uk on August 14, 2007, retrieved on April 28, 2019
  65. "Freeman Dyson Takes On The Climate Establishment", interview published 2 June 2009 by Yale University's Environment 360
  66. Dyson, F. (12 June 2008) "The Question of Global Warming", The New York Review of Books. Retrieved on 2011-10-07.
  67. "University of Michigan 2005 Winter Commencement Address". University of Michigan. Archived from the original on 31 August 2006.
  68. Freeman J. Dyson, "Can we control the carbon dioxide in the atmosphere?", Energy, Volume 2, Issue 3, September 1977, Pages 287–291. doi:10.1016/0360-5442(77)90033-0
  69. Global Warming Policy Foundation Published by desmog.co.uk Retrieved on April 30, 2019
  70. "Top boffin Freeman Dyson on climate change, interstellar travel, fusion, and more", interview published 2 June 2009 by The Register
  71. https://www.youtube.com/watch?v=BiKfWdXXfIs
  72. Dyson, F.J. (1979). "The Children's Crusade" in Disturbing the Universe
  73. Dyson, F.J. (1979). "The Blood of a Poet" in Disturbing the Universe
  74. Dyson, F.J. (1984) Weapons and Hope
  75. Dyson, F.J. (1979). "The Ethics of Defense" in Disturbing the Universe, p. 149.
  76. F.J. Dyson, R. Gomer, S. Weinberg, S.C. Wright "Tactical Nuclear Weapons in Southeast Asia" (March 1967)
  77. Broad, William J. (8 August 2015). "29 U.S. Scientists Praise Iran Nuclear Deal in Letter to Obama". The New York Times. Retrieved 9 August 2015.
  78. ^ Freeman Dyson (15 March 2000). Progress In Religion (Speech). Templeton Prize Lecture. Archived from the original on 15 June 2018. Retrieved 7 October 2011 – via Edge.org.
  79. ^ Freeman Dyson (22 June 2006). "Religion from the Outside". The New York Review of Books. Retrieved 7 October 2011.
  80. Moses Gbenu (June 2003). Back to Hell. Xulon Press. p. 110. ISBN 9781591608158. Retrieved 15 February 2014. The cash part of this award is over $1 million. Three facts are significant about this award. First, the same award was given to an agnostic Mathematician Freeman Dyson, the Buddhist Dalai Lama, Mother Theresa, and Charles R. Filmore, son of the founder of the mind-science cult, Unity.
  81. Karl Giberson; Donald A. Yerxa (2002). Species of Origins: America's Search for a Creation Story. Rowman & Littlefield. p. 141. ISBN 9780742507654. Retrieved 15 February 2014. Dyson is not a hard-nosed materialist and, in fact, criticizes his colleagues who champion that viewpoint. Officially, he calls himself an agnostic, but his writings make it clear that his agnosticism is tinged with something akin to deism.
  82. Freeman Dyson (28 March 2002). "Science & Religion: No Ends in Sight". The New York Review of Books. Retrieved 30 July 2012.
  83. Dawkins, Richard (2006). The God Delusion. Bantam Press. p. 152. ISBN 978-0-61868-000-9.
  84. John Brockman (2007). "Richard Dawkins—Freeman Dyson: an exchange". Edge.org. Retrieved 21 October 2015.
  85. Hodgson, David (2004). Half-Life 2: Raising the Bar. Prima Games. pp. 30–31. ISBN 0-7615-4364-3.
  86. Walter, Claire (1982). Winners, the blue ribbon encyclopedia of awards. Facts on File Inc. p. 438. ISBN 9780871963864.
  87. "Theoreticians Name Dyson As Winner of Oppenheimer Prize". Physics Today. 23 (3): 97. March 1970. Bibcode:1970PhT....23c..97.. doi:10.1063/1.3022048.
  88. Dyson, Freeman (September 1998). Imagined Worlds. The Jerusalem-Harvard Lectures. HUP. p. 224. ISBN 9780674539099.
  89. Steve Connor (23 March 2000). "£600,000 prize for physicist who urges ethics in science". The Independent. Retrieved 15 October 2015.
  90. https://www.aub.edu.lb/articles/Pages/first-presidential-science-humanism-award-physicist-freeman-dyson.aspx
  91. "Freeman Dyson: By the Book". The New York Times (Interview). 16 April 2015.
  92. Dyson, Freeman (February 2009). "Birds and Frogs" (PDF). Notices of the American Mathematical Society. 56 (2): 212–223. ISSN 1088-9477. Archived (PDF) from the original on 4 March 2011. Retrieved 23 April 2015.

Further reading

External links

By Dyson

About Dyson

Laureates of the Wolf Prize in Physics
1970s
1980s
1990s
2000s
2010s
2020s
Matteucci Medallists
1851–1900
1901–1950
1951–2000
2001–present
Templeton Prize laureates
1970s
1980s
1990s
2000s
2010s
2020s
John von Neumann Lecturers
Categories:
Freeman Dyson: Difference between revisions Add topic