Misplaced Pages

Meridian arc: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 04:57, 2 May 2021 editFgnievinski (talk | contribs)Autopatrolled, Extended confirmed users67,327 edits Spherical Earth← Previous edit Revision as of 06:23, 2 May 2021 edit undoFgnievinski (talk | contribs)Autopatrolled, Extended confirmed users67,327 edits topNext edit →
Line 1: Line 1:
{{short description|Distance along a portion of a meridian, for use in geodesy}} {{short description|Distance along a portion of a meridian, for use in geodesy}}
In ], a '''meridian arc''' measurement is the distance between two points with the same ], i.e., a ] of a ] ] or its length. Two or more such determinations at different locations then specify the shape of the ] which best approximates the shape of the ]. This process is called the determination of the ]. The earliest determinations of the size of a ] required a single arc. The latest determinations use ] measurements and the methods of ] to determine the reference ellipsoids. In ], a '''meridian arc''' ] between two points on the Earth's surface with the same ], i.e., a ] of a ], or its length. Two or more such determinations at different locations then specify the shape of the ] which best approximates the shape of the ]. This process is called the determination of the ]. The earliest determinations of the size of a ] required a single arc. The latest determinations use ] measurements and the methods of ] to determine the reference ellipsoids.
Those interested in accurate expressions of the meridian arc for the ] ellipsoid should consult the subsection entitled ]. Those interested in accurate expressions of the meridian arc for the ] ellipsoid should consult the subsection entitled ].



Revision as of 06:23, 2 May 2021

Distance along a portion of a meridian, for use in geodesy

In geodesy, a meridian arc curve between two points on the Earth's surface with the same longitude, i.e., a segment of a meridian, or its length. Two or more such determinations at different locations then specify the shape of the reference ellipsoid which best approximates the shape of the geoid. This process is called the determination of the figure of the Earth. The earliest determinations of the size of a spherical Earth required a single arc. The latest determinations use astro-geodetic measurements and the methods of satellite geodesy to determine the reference ellipsoids. Those interested in accurate expressions of the meridian arc for the WGS84 ellipsoid should consult the subsection entitled numerical expressions.

History of measurement

See also: History of geodesy, Earth's circumference § History, and Earth's radius § History

Spherical Earth

Main article: Spherical Earth § History Further information: Earth radius and Earth's circumference

Early estimations of Earth's size are recorded from Greece in the 4th century BC, and from scholars at the caliph's House of Wisdom in the 9th century. The first realistic value was calculated by Alexandrian scientist Eratosthenes about 240 BC. He estimated that the meridian has a length of 252,000 stadia, with an error on the real value between -2.4% and +0.8% (assuming a value for the stadion between 155 and 160 metres). Eratosthenes described his technique in a book entitled On the measure of the Earth, which has not been preserved. A similar method was used by Posidonius about 150 years later, and slightly better results were calculated in 827 by the arc measurement method, attributed to the Caliph Al-Ma'mun.

Ellipsoidal Earth

Main article: Earth ellipsoid

Early literature uses the term oblate spheroid to describe a sphere "squashed at the poles". Modern literature uses the term ellipsoid of revolution in place of spheroid, although the qualifying words "of revolution" are usually dropped. An ellipsoid that is not an ellipsoid of revolution is called a triaxial ellipsoid. Spheroid and ellipsoid are used interchangeably in this article, with oblate implied if not stated.

17th and 18th centuries

Although it had been known since classical antiquity that the Earth was spherical, by the 17th century, evidence was accumulating that it was not a perfect sphere. In 1672, Jean Richer found the first evidence that gravity was not constant over the Earth (as it would be if the Earth were a sphere); he took a pendulum clock to Cayenne, French Guiana and found that it lost 2+1⁄2 minutes per day compared to its rate at Paris. This indicated the acceleration of gravity was less at Cayenne than at Paris. Pendulum gravimeters began to be taken on voyages to remote parts of the world, and it was slowly discovered that gravity increases smoothly with increasing latitude, gravitational acceleration being about 0.5% greater at the geographical poles than at the Equator.

In 1687, Newton had published in the Principia as a proof that the Earth was an oblate spheroid of flattening equal to ⁠1/230⁠. This was disputed by some, but not all, French scientists. A meridian arc of Jean Picard was extended to a longer arc by Giovanni Domenico Cassini and his son Jacques Cassini over the period 1684–1718. The arc was measured with at least three latitude determinations, so they were able to deduce mean curvatures for the northern and southern halves of the arc, allowing a determination of the overall shape. The results indicated that the Earth was a prolate spheroid (with an equatorial radius less than the polar radius). To resolve the issue, the French Academy of Sciences (1735) proposed expeditions to Peru (Bouguer, Louis Godin, de La Condamine, Antonio de Ulloa, Jorge Juan) and Lapland (Maupertuis, Clairaut, Camus, Le Monnier, Abbe Outhier, Anders Celsius). The expedition to Peru is described in the French Geodesic Mission article and that to Lapland is described in the Torne Valley article. The resulting measurements at equatorial and polar latitudes confirmed that the Earth was best modelled by an oblate spheroid, supporting Newton. By 1743, Clairaut's theorem however had completely supplanted Newton's approach.

By the end of the century, Delambre had remeasured and extended the French arc from Dunkirk to the Mediterranean (the meridian arc of Delambre and Méchain). It was divided into five parts by four intermediate determinations of latitude. By combining the measurements together with those for the arc of Peru, ellipsoid shape parameters were determined and the distance between the Equator and pole along the Paris Meridian was calculated as 5130762 toises as specified by the standard toise bar in Paris. Defining this distance as exactly 10000000 m led to the construction of a new standard metre bar as 0.5130762 toises.

19th century

In the 19th century, many astronomers and geodesists were engaged in detailed studies of the Earth's curvature along different meridian arcs. The analyses resulted in a great many model ellipsoids such as Plessis 1817, Airy 1830, Bessel 1830, Everest 1830, and Clarke 1866. A comprehensive list of ellipsoids is given under Earth ellipsoid.

The nautical mile

Historically a nautical mile was defined as the length of one minute of arc along a meridian of a spherical earth. An ellipsoid model leads to a variation of the nautical mile with latitude. This was resolved by defining the nautical mile to be exactly 1,852 metres. However, for all practical purposes distances are measured from the latitude scale of charts. As the Royal Yachting Association says in its manual for day skippers: "1 (minute) of Latitude = 1 sea mile", followed by "For most practical purposes distance is measured from the latitude scale, assuming that one minute of latitude equals one nautical mile".

Calculation

The determination of the meridian distance, that is the distance from the equator to a point at a latitude φ on the ellipsoid is an important problem in the theory of map projections, particularly the transverse Mercator projection. Ellipsoids are normally specified in terms of the parameters defined above, a, b, f, but in theoretical work it is useful to define extra parameters, particularly the eccentricity, e, and the third flattening n. Only two of these parameters are independent and there are many relations between them:

f = a b a , e 2 = f ( 2 f ) , n = a b a + b = f 2 f , b = a ( 1 f ) = a 1 e 2 , e 2 = 4 n ( 1 + n ) 2 . {\displaystyle {\begin{aligned}f&={\frac {a-b}{a}}\,,\qquad e^{2}=f(2-f)\,,\qquad n={\frac {a-b}{a+b}}={\frac {f}{2-f}}\,,\\b&=a(1-f)=a{\sqrt {1-e^{2}}}\,,\qquad e^{2}={\frac {4n}{(1+n)^{2}}}\,.\end{aligned}}}

Definition

The meridian radius of curvature can be shown to be equal to:

M ( φ ) = a ( 1 e 2 ) ( 1 e 2 sin 2 φ ) 3 2 , {\displaystyle M(\varphi )={\frac {a(1-e^{2})}{\left(1-e^{2}\sin ^{2}\varphi \right)^{\frac {3}{2}}}},}

The arc length of an infinitesimal element of the meridian is dm = M(φ) (with φ in radians). Therefore, the meridian distance from the equator to latitude φ is

m ( φ ) = 0 φ M ( φ ) d φ = a ( 1 e 2 ) 0 φ ( 1 e 2 sin 2 φ ) 3 2 d φ . {\displaystyle {\begin{aligned}m(\varphi )&=\int _{0}^{\varphi }M(\varphi )\,d\varphi \\&=a(1-e^{2})\int _{0}^{\varphi }\left(1-e^{2}\sin ^{2}\varphi \right)^{-{\frac {3}{2}}}\,d\varphi \,.\end{aligned}}}

The distance formula is simpler when written in terms of the parametric latitude,

m ( φ ) = b 0 β 1 + e 2 sin 2 β d β , {\displaystyle m(\varphi )=b\int _{0}^{\beta }{\sqrt {1+e'^{2}\sin ^{2}\beta }}\,d\beta \,,}

where tan β = (1 − f)tan φ and e′ = ⁠e/1 − e⁠.

Even though latitude is normally confined to the range , all the formulae given here apply to measuring distance around the complete meridian ellipse (including the anti-meridian). Thus the ranges of φ, β, and the rectifying latitude μ, are unrestricted.

Relation to elliptic integrals

Further information: Ellipse § Arc length

The above integral is related to a special case of an incomplete elliptic integral of the third kind. In the notation of the online NIST handbook (Section 19.2(ii)),

m ( φ ) = a ( 1 e 2 ) Π ( φ , e 2 , e ) . {\displaystyle m(\varphi )=a\left(1-e^{2}\right)\,\Pi (\varphi ,e^{2},e)\,.}

It may also be written in terms of incomplete elliptic integrals of the second kind (See the NIST handbook Section 19.6(iv)),

m ( φ ) = a ( E ( φ , e ) e 2 sin φ cos φ 1 e 2 sin 2 φ ) = a ( E ( φ , e ) + d 2 d φ 2 E ( φ , e ) ) = b E ( β , i e ) . {\displaystyle {\begin{aligned}m(\varphi )&=a\left(E(\varphi ,e)-{\frac {e^{2}\sin \varphi \cos \varphi }{\sqrt {1-e^{2}\sin ^{2}\varphi }}}\right)\\&=a\left(E(\varphi ,e)+{\frac {d^{2}}{d\varphi ^{2}}}E(\varphi ,e)\right)\\&=bE(\beta ,ie')\,.\end{aligned}}}

The calculation (to arbitrary precision) of the elliptic integrals and approximations are also discussed in the NIST handbook. These functions are also implemented in computer algebra programs such as Mathematica and Maxima.

Series expansions

The above integral may be expressed as an infinite truncated series by expanding the integrand in a Taylor series, performing the resulting integrals term by term, and expressing the result as a trigonometric series. In 1755, Euler derived an expansion in the third eccentricity squared.

Expansions in the eccentricity (e)

Delambre in 1799 derived a widely used expansion on e,

m ( φ ) = b 2 a ( D 0 φ + D 2 sin 2 φ + D 4 sin 4 φ + D 6 sin 6 φ + D 8 sin 8 φ + ) , {\displaystyle m(\varphi )={\frac {b^{2}}{a}}\left(D_{0}\varphi +D_{2}\sin 2\varphi +D_{4}\sin 4\varphi +D_{6}\sin 6\varphi +D_{8}\sin 8\varphi +\cdots \right)\,,}

where

D 0 = 1 + 3 4 e 2 + 45 64 e 4 + 175 256 e 6 + 11025 16384 e 8 + , D 2 = 3 8 e 2 15 32 e 4 525 1024 e 6 2205 4096 e 8 , D 4 = 15 256 e 4 + 105 1024 e 6 + 2205 16384 e 8 + , D 6 = 35 3072 e 6 105 4096 e 8 , D 8 = 315 131072 e 8 + . {\displaystyle {\begin{aligned}D_{0}&=1+{\tfrac {3}{4}}e^{2}+{\tfrac {45}{64}}e^{4}+{\tfrac {175}{256}}e^{6}+{\tfrac {11025}{16384}}e^{8}+\cdots ,\\D_{2}&=-{\tfrac {3}{8}}e^{2}-{\tfrac {15}{32}}e^{4}-{\tfrac {525}{1024}}e^{6}-{\tfrac {2205}{4096}}e^{8}-\cdots ,\\D_{4}&={\tfrac {15}{256}}e^{4}+{\tfrac {105}{1024}}e^{6}+{\tfrac {2205}{16384}}e^{8}+\cdots ,\\D_{6}&=-{\tfrac {35}{3072}}e^{6}-{\tfrac {105}{4096}}e^{8}-\cdots ,\\D_{8}&={\tfrac {315}{131072}}e^{8}+\cdots .\end{aligned}}}

Rapp gives a detailed derivation of this result. In this article, trigonometric terms of the form sin 4φ are interpreted as sin(4φ).

Expansions in the third flattening (n)

Series with considerably faster convergence can be obtained by expanding in terms of the third flattening n instead of the eccentricity. They are related by

e 2 = 4 n ( 1 + n ) 2 . {\displaystyle e^{2}={\frac {4n}{(1+n)^{2}}}\,.}

In 1837, Bessel obtained one such series, which was put into a simpler form by Helmert,

m ( φ ) = a + b 2 ( H 0 φ + H 2 sin 2 φ + H 4 sin 4 φ + H 6 sin 6 φ + H 8 sin 8 φ + ) , {\displaystyle m(\varphi )={\frac {a+b}{2}}\left(H_{0}\varphi +H_{2}\sin 2\varphi +H_{4}\sin 4\varphi +H_{6}\sin 6\varphi +H_{8}\sin 8\varphi +\cdots \right)\,,}

with

H 0 = 1 + 1 4 n 2 + 1 64 n 4 + , H 2 = 3 2 n + 3 16 n 3 + , H 6 = 35 48 n 3 + , H 4 = 15 16 n 2 15 64 n 4 , H 8 = 315 512 n 4 . {\displaystyle {\begin{aligned}H_{0}&=1+{\tfrac {1}{4}}n^{2}+{\tfrac {1}{64}}n^{4}+\cdots ,\\H_{2}&=-{\tfrac {3}{2}}n+{\tfrac {3}{16}}n^{3}+\cdots ,&H_{6}&=-{\tfrac {35}{48}}n^{3}+\cdots ,\\H_{4}&={\tfrac {15}{16}}n^{2}-{\tfrac {15}{64}}n^{4}-\cdots ,\qquad &H_{8}&={\tfrac {315}{512}}n^{4}-\cdots .\end{aligned}}}

Because n changes sign when a and b are interchanged, and because the initial factor ⁠1/2⁠(a + b) is constant under this interchange, half the terms in the expansions of H2k vanish.

The series can be expressed with either a or b as the initial factor by writing, for example,

1 2 ( a + b ) = a 1 + n = a ( 1 n + n 2 n 3 + n 4 ) , {\displaystyle {\frac {1}{2}}(a+b)={\frac {a}{1+n}}=a(1-n+n^{2}-n^{3}+n^{4}-\cdots )\,,}

and expanding the result as a series in n. Even though this results in more slowly converging series, such series are used in the specification for the transverse Mercator projection by the National Geospatial Intelligence Agency and the Ordnance Survey of Great Britain.

Series in terms of the parametric latitude

In 1825, Bessel derived an expansion of the meridian distance in terms of the parametric latitude β in connection with his work on geodesics,

m ( φ ) = a + b 2 ( B 0 β + B 2 sin 2 β + B 4 sin 4 β + B 6 sin 6 β + B 8 sin 8 β + ) , {\displaystyle m(\varphi )={\frac {a+b}{2}}\left(B_{0}\beta +B_{2}\sin 2\beta +B_{4}\sin 4\beta +B_{6}\sin 6\beta +B_{8}\sin 8\beta +\cdots \right)\,,}

with

B 0 = 1 + 1 4 n 2 + 1 64 n 4 + = H 0 , B 2 = 1 2 n + 1 16 n 3 + , B 6 = 1 48 n 3 + , B 4 = 1 16 n 2 + 1 64 n 4 + , B 8 = 5 512 n 4 + . {\displaystyle {\begin{aligned}B_{0}&=1+{\tfrac {1}{4}}n^{2}+{\tfrac {1}{64}}n^{4}+\cdots =H_{0}\,,\\B_{2}&=-{\tfrac {1}{2}}n+{\tfrac {1}{16}}n^{3}+\cdots ,&B_{6}&=-{\tfrac {1}{48}}n^{3}+\cdots ,\\B_{4}&=-{\tfrac {1}{16}}n^{2}+{\tfrac {1}{64}}n^{4}+\cdots ,\qquad &B_{8}&=-{\tfrac {5}{512}}n^{4}+\cdots .\end{aligned}}}

Because this series provides an expansion for the elliptic integral of the second kind, it can be used to write the arc length in terms of the geographic latitude as

m ( φ ) = a + b 2 ( B 0 φ B 2 sin 2 φ + B 4 sin 4 φ B 6 sin 6 φ + B 8 sin 8 φ 2 n sin 2 φ 1 + 2 n cos 2 φ + n 2 ) . {\displaystyle m(\varphi )={\frac {a+b}{2}}\left(B_{0}\varphi -B_{2}\sin 2\varphi +B_{4}\sin 4\varphi -B_{6}\sin 6\varphi +B_{8}\sin 8\varphi -\cdots -{\frac {2n\sin 2\varphi }{\sqrt {1+2n\cos 2\varphi +n^{2}}}}\right)\,.}

Generalized series

The above series, to eighth order in eccentricity or fourth order in third flattening, provide millimetre accuracy. With the aid of symbolic algebra systems, they can easily be extended to sixth order in the third flattening which provides full double precision accuracy for terrestrial applications.

Delambre and Bessel both wrote their series in a form that allows them to be generalized to arbitrary order. The coefficients in Bessel's series can expressed particularly simply

B 2 k = { c 0 , if  k = 0 , c k k , if  k > 0 , {\displaystyle B_{2k}={\begin{cases}c_{0}\,,&{\text{if }}k=0\,,\\{\dfrac {c_{k}}{k}}\,,&{\text{if }}k>0\,,\end{cases}}}

where

c k = j = 0 ( 2 j 3 ) ! ! ( 2 j + 2 k 3 ) ! ! ( 2 j ) ! ! ( 2 j + 2 k ) ! ! n k + 2 j {\displaystyle c_{k}=\sum _{j=0}^{\infty }{\frac {(2j-3)!!\,(2j+2k-3)!!}{(2j)!!\,(2j+2k)!!}}n^{k+2j}}

and k!! is the double factorial, extended to negative values via the recursion relation: (−1)!! = 1 and (−3)!! = −1.

The coefficients in Helmert's series can similarly be expressed generally by

H 2 k = ( 1 ) k ( 1 2 k ) ( 1 + 2 k ) B 2 k . {\displaystyle H_{2k}=(-1)^{k}(1-2k)(1+2k)B_{2k}\,.}

This result was conjected by Helmert and proved by Kawase.

The factor (1 − 2k)(1 + 2k) results in poorer convergence of the series in terms of φ compared to the one in β.

Numerical expressions

The trigonometric series given above can be conveniently evaluated using Clenshaw summation. This method avoids the calculation of most of the trigonometric functions and allows the series to be summed rapidly and accurately. The technique can also be used to evaluate the difference m(φ1) − m(φ2) while maintaining high relative accuracy.

Substituting the values for the semi-major axis and eccentricity of the WGS84 ellipsoid gives

m ( φ ) = ( 111 132.952 55 φ ( ) 16 038.509 sin 2 φ + 16.833 sin 4 φ 0.022 sin 6 φ + 0.000 03 sin 8 φ )  metres = ( 111 132.952 55 β ( ) 5 346.170 sin 2 β 1.122 sin 4 β 0.001 sin 6 β 0.5 × 10 6 sin 8 β )  metres, {\displaystyle {\begin{aligned}m(\varphi )&=\left(111\,132.952\,55\,\varphi ^{(\circ )}-16\,038.509\,\sin 2\varphi +16.833\,\sin 4\varphi -0.022\,\sin 6\varphi +0.000\,03\,\sin 8\varphi \right){\mbox{ metres}}\\&=\left(111\,132.952\,55\,\beta ^{(\circ )}-5\,346.170\,\sin 2\beta -1.122\,\sin 4\beta -0.001\,\sin 6\beta -0.5\times 10^{-6}\,\sin 8\beta \right){\mbox{ metres,}}\end{aligned}}}

where φ° = ⁠φ/1°⁠ is φ expressed in degrees (and similarly for β°).

On the ellipsoid the exact distance between parallels at φ1 and φ2 is m(φ1) − m(φ2). For WGS84 an approximate expression for the distance Δm between the two parallels at ±0.5° from the circle at latitude φ is given by

Δ m = ( 111 133 560 cos 2 φ )  metres. {\displaystyle \Delta m=(111\,133-560\cos 2\varphi ){\mbox{ metres.}}}

Quarter meridian

See also: Ellipse § Circumference

The distance from the equator to the pole, the quarter meridian (analogous to the quarter-circle), is

m p = m ( π 2 ) . {\displaystyle m_{\mathrm {p} }=m\left({\frac {\pi }{2}}\right)\,.}

It was part of the historical definition of the metre and of the nautical mile.

The quarter meridian can be expressed in terms of the complete elliptic integral of the second kind,

m p = a E ( e ) = b E ( i e ) . {\displaystyle m_{\mathrm {p} }=aE(e)=bE(ie').}

where e , e {\displaystyle e,e'} are the first and second eccentricities.

The quarter meridian is also given by the following generalized series:

m p = π ( a + b ) 4 c 0 = π ( a + b ) 4 j = 0 ( ( 2 j 3 ) ! ! ( 2 j ) ! ! ) 2 n 2 j , {\displaystyle m_{\mathrm {p} }={\frac {\pi (a+b)}{4}}c_{0}={\frac {\pi (a+b)}{4}}\sum _{j=0}^{\infty }\left({\frac {(2j-3)!!}{(2j)!!}}\right)^{2}n^{2j}\,,}

(For the formula of c0, see section #Generalized series above.) This result was first obtained by Ivory.

The numerical expression for the quarter meridian on the WGS84 ellipsoid is

m p = 10 001 965.729  m. {\displaystyle m_{\mathrm {p} }=10\,001\,965.729{\mbox{ m.}}}

The polar Earth's circumference is simply four times quarter meridian:

C p = 4 m p {\displaystyle C_{p}=4m_{p}}

The perimeter of a meridian ellipse can also be rewritten in the form of a rectifying circle perimeter, Cp = 2πMr. Therefore, the rectifying Earth radius is:

M r = 0.5 ( a + b ) / c 0 {\displaystyle M_{r}=0.5(a+b)/c_{0}}

It can be evaluated as 6367449.146 m.

The inverse meridian problem for the ellipsoid

In some problems, we need to be able to solve the inverse problem: given m, determine φ. This may be solved by Newton's method, iterating

φ i + 1 = φ i m ( φ i ) m M ( φ i ) , {\displaystyle \varphi _{i+1}=\varphi _{i}-{\frac {m(\varphi _{i})-m}{M(\varphi _{i})}}\,,}

until convergence. A suitable starting guess is given by φ0 = μ where

μ = π 2 m m p {\displaystyle \mu ={\frac {\pi }{2}}{\frac {m}{m_{\mathrm {p} }}}}

is the rectifying latitude. Note that it there is no need to differentiate the series for m(φ), since the formula for the meridian radius of curvature M(φ) can be used instead.

Alternatively, Helmert's series for the meridian distance can be reverted to give

φ = μ + H 2 sin 2 μ + H 4 sin 4 μ + H 6 sin 6 μ + H 8 sin 8 μ + {\displaystyle \varphi =\mu +H'_{2}\sin 2\mu +H'_{4}\sin 4\mu +H'_{6}\sin 6\mu +H'_{8}\sin 8\mu +\cdots }

where

H 2 = 3 2 n 27 32 n 3 + , H 6 = 151 96 n 3 + , H 4 = 21 16 n 2 55 32 n 4 + , H 8 = 1097 512 n 4 + . {\displaystyle {\begin{aligned}H'_{2}&={\tfrac {3}{2}}n-{\tfrac {27}{32}}n^{3}+\cdots ,&H'_{6}&={\tfrac {151}{96}}n^{3}+\cdots ,\\H'_{4}&={\tfrac {21}{16}}n^{2}-{\tfrac {55}{32}}n^{4}+\cdots ,\qquad &H'_{8}&={\tfrac {1097}{512}}n^{4}+\cdots .\end{aligned}}}

Similarly, Bessel's series for m in terms of β can be reverted to give

β = μ + B 2 sin 2 μ + B 4 sin 4 μ + B 6 sin 6 μ + B 8 sin 8 μ + , {\displaystyle \beta =\mu +B'_{2}\sin 2\mu +B'_{4}\sin 4\mu +B'_{6}\sin 6\mu +B'_{8}\sin 8\mu +\cdots ,}

where

B 2 = 1 2 n 9 32 n 3 + , B 6 = 29 96 n 3 , B 4 = 5 16 n 2 37 96 n 4 + , B 8 = 539 1536 n 4 . {\displaystyle {\begin{aligned}B'_{2}&={\tfrac {1}{2}}n-{\tfrac {9}{32}}n^{3}+\cdots ,&B'_{6}&={\tfrac {29}{96}}n^{3}-\cdots ,\\B'_{4}&={\tfrac {5}{16}}n^{2}-{\tfrac {37}{96}}n^{4}+\cdots ,\qquad &B'_{8}&={\tfrac {539}{1536}}n^{4}-\cdots .\end{aligned}}}

Legendre showed that the distance along a geodesic on an spheroid is the same as the distance along the perimeter of an ellipse. For this reason, the expression for m in terms of β and its inverse given above play a key role in the solution of the geodesic problem with m replaced by s, the distance along the geodesic, and β replaced by σ, the arc length on the auxiliary sphere. The requisite series extended to sixth order are given by Karney, Eqs. (17) & (21), with ε playing the role of n and τ playing the role of μ.

See also

References

  1. Russo, Lucio (2004). The Forgotten Revolution. Berlin: Springer. p. 273-277.
  2. Torge, W.; Müller, J. (2012). Geodesy. De Gruyter Textbook. De Gruyter. p. 5. ISBN 978-3-11-025000-8. Retrieved 2021-05-02.
  3. Poynting, John Henry; Joseph John Thompson (1907). A Textbook of Physics, 4th Ed. London: Charles Griffin & Co. p. 20.
  4. Victor F., Lenzen; Robert P. Multauf (1964). "Paper 44: Development of gravity pendulums in the 19th century". United States National Museum Bulletin 240: Contributions from the Museum of History and Technology reprinted in Bulletin of the Smithsonian Institution. Washington: Smithsonian Institution Press. p. 307. Retrieved 2009-01-28.
  5. Isaac Newton: Principia, Book III, Proposition XIX, Problem III, translated into English by Andrew Motte. A searchable modern translation is available at 17centurymaths. Search the following pdf file for 'spheroid'.
  6. ^ Clarke, Alexander Ross (1880). Geodesy. Oxford: Clarendon Press. OCLC 2484948.. Freely available online at Archive.org and Forgotten Books (ISBN 9781440088650). In addition the book has been reprinted by Nabu Press (ISBN 978-1286804131), the first chapter covers the history of early surveys.
  7. Clarke, Alexander Ross; James, Henry (1866a). Comparisons of the standards of length of England, France, Belgium, Prussia, Russia, India, Australia, made at the Ordnance survey office, Southampton. London: G.E. Eyre and W. Spottiswoode for H.M. Stationery Office. pp. 281–87. OCLC 906501. Appendix on Figure of the Earth.{{cite book}}: CS1 maint: postscript (link)
  8. Hopkinson, Sara (2012). RYA day skipper handbook - sail. Hamble: The Royal Yachting Association. p. 76. ISBN 9781-9051-04949.
  9. Rapp, R, (1991): Geometric Geodesy, Part I, §3.5.1, pp. 28–32.
  10. Osborne, Peter (2013), The Mercator Projections, doi:10.5281/zenodo.35392. Section 5.6. This reference includes the derivation of curvature formulae from first principles and a proof of Meusnier's theorem. (Supplements: Maxima files and Latex code and figures) {{citation}}: External link in |postscript= (help)CS1 maint: postscript (link)
  11. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors, 2010, NIST Handbook of Mathematical Functions (Cambridge University Press).
  12. Mathematica guide: Elliptic Integrals
  13. Maxima, 2009, A computer algebra system, version 5.20.1.
  14. Euler, L. (1755). "Élémens de la trigonométrie sphéroïdique tirés de la méthode des plus grands et plus petits" [Elements of spheroidal trigonometry taken from the method of maxima and minima]. Mémoires de l'Académie Royale des Sciences de Berlin 1753 (in French). 9: 258–293. Figures. {{cite journal}}: External link in |postscript= (help)CS1 maint: postscript (link)
  15. ^ Delambre, J. B. J. (1799): Méthodes Analytiques pour la Détermination d'un Arc du Méridien; précédées d'un mémoire sur le même sujet par A. M. Legendre, De L'Imprimerie de Crapelet, Paris, 72–73
  16. Rapp, R, (1991), §3.6, pp. 36–40.
  17. Bessel, F. W. (1837). "Bestimmung der Axen des elliptischen Rotationssphäroids, welches den vorhandenen Messungen von Meridianbögen der Erde am meisten entspricht" [Estimation of the axes of the ellipsoid through measurements of the meridian arc] (PDF). Astronomische Nachrichten (in German). 14 (333): 333–346. Bibcode:1837AN.....14..333B. doi:10.1002/asna.18370142301.
  18. Helmert, F. R. (1880): Die mathematischen und physikalischen Theorieen der höheren Geodäsie, Einleitung und 1 Teil, Druck und Verlag von B. G. Teubner, Leipzig, § 1.7, pp. 44–48. English translation (by the Aeronautical Chart and Information Center, St. Louis) available at doi:10.5281/zenodo.32050
  19. Krüger, L. (1912): Konforme Abbildung des Erdellipsoids in der Ebene. Royal Prussian Geodetic Institute, New Series 52, page 12
  20. J. W. Hager, J.F. Behensky, and B.W. Drew, 1989. Defense Mapping Agency Technical Report TM 8358.2. The universal grids: Universal Transverse Mercator (UTM) and Universal Polar Stereographic (UPS)
  21. A guide to coordinate systems in Great Britain, Ordnance Survey of Great Britain.
  22. ^ Bessel, F. W. (2010). "The calculation of longitude and latitude from geodesic measurements (1825)". Astron. Nachr. 331 (8): 852–861. arXiv:0908.1824. Bibcode:2010AN....331..852K. doi:10.1002/asna.201011352. English translation of Astron. Nachr. 4, 241–254 (1825), §5.{{cite journal}}: CS1 maint: postscript (link)
  23. Helmert (1880), §1.11
  24. Kawase, K. (2011): A General Formula for Calculating Meridian Arc Length and its Application to Coordinate Conversion in the Gauss-Krüger Projection, Bulletin of the Geospatial Information Authority of Japan, 59, 1–13
  25. Ivory, J. (1798). "A new series for the rectification of the ellipsis". Transactions of the Royal Society of Edinburgh. 4 (2): 177–190. doi:10.1017/s0080456800030817.
  26. Helmert (1880), §1.10
  27. Adams, Oscar S (1921). Latitude Developments Connected With Geodesy and Cartography, (with tables, including a table for Lambert equal area meridional projection). Special Publication No. 67 of the US Coast and Geodetic Survey. A facsimile of this publication is available from the US National Oceanic and Atmospheric Administration (NOAA) at http://docs.lib.noaa.gov/rescue/cgs_specpubs/QB275U35no671921.pdf, p. 127
  28. Helmert (1880), §5.6
  29. Legendre, A. M. (1811). Exercices de Calcul Intégral sur Divers Ordres de Transcendantes et sur les Quadratures [Exercises in Integral Calculus] (in French). Paris: Courcier. p. 180. OCLC 312469983.
  30. Helmert (1880), Chap. 5
  31. Karney, C. F. F. (2013). "Algorithms for geodesics". Journal of Geodesy. 87 (1): 43–55. arXiv:1109.4448. Bibcode:2013JGeod..87...43K. doi:10.1007/s00190-012-0578-z[REDACTED] Addenda. {{cite journal}}: External link in |postscript= (help)CS1 maint: postscript (link)

External links

Categories:
Meridian arc: Difference between revisions Add topic