Misplaced Pages

Option type: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 05:17, 26 September 2022 editEf3 (talk | contribs)83 edits Zig: In Zig, add ? before the type name like <code>?32</code> to make it optional type. Payload <var>n</var> can be captured in an ''if'' or ''while'' statement, such as <syntaxhighlight lang=zig inline>if (opt) |n| { ... } else { ... } </syntaxhighlight>, and anTag: 2017 wikitext editor← Previous edit Revision as of 22:26, 5 October 2022 edit undoDarthKitty (talk | contribs)287 edits Zig: align example with those in other sectionsTag: 2017 wikitext editorNext edit →
Line 255: Line 255:
=== Zig === === Zig ===
{{Further|Zig (programming language)}} {{Further|Zig (programming language)}}

In Zig, add ? before the type name like <code>?32</code> to make it optional type. In Zig, add ? before the type name like <code>?32</code> to make it optional type.


Payload <var>n</var> can be captured in an ''if'' or ''while'' statement, such as <syntaxhighlight lang=zig inline>if (opt) |n| { ... } else { ... } </syntaxhighlight>, and an ''else'' clause is evaluated if it is <var>null</var>. Payload <var>n</var> can be captured in an ''if'' or ''while'' statement, such as {{code|2=zig|if (opt) {{!}}n{{!}} { ... } else { ... } }}, and an ''else'' clause is evaluated if it is <code>null</code>.


;Code example:<syntaxhighlight lang="zig"> <syntaxhighlight lang="zig">
const std = @import("std"); const std = @import("std");
const print = std.io.getStdOut().writer().print;


fn showValue(allocator: std.mem.Allocator, opt: ?i32) !u8 {
const Compute = struct {
value: ?i32, return if (opt) |n|
pub fn init(value: ?i32) Compute { std.fmt.allocPrint(allocator, "The value is: {}", .{n})
else
return Compute{ .value = value };
std.fmt.allocPrint(allocator, "No value", .{});
}
}
pub fn format(
self: @This(),
comptime fmt: const u8,
options: std.fmt.FormatOptions,
out_stream: anytype,
) !void {
_ = fmt;
_ = options;
if (self.value) |n| {
return out_stream.print("The value is: {}", .{n});
} else {
return out_stream.print("No value", .{});
}
}
};


pub fn main() !void { pub fn main() !void {
// Set up an allocator, and warn if we forget to free any memory.
const full = Compute.init(42);
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
const empty = Compute.init(null);
defer std.debug.assert(!gpa.deinit());
const allocator = gpa.allocator();


// Prepare the standard output stream.
try print("full -> {}\n", .{full});
const stdout = std.io.getStdOut().writer();
try print("empty -> {}\n", .{empty});

// Perform our example.
const full = 42;
const empty = null;

const full_msg = try showValue(allocator, full);
defer allocator.free(full_msg);
try stdout.print("full -> {s}\n", .{full_msg});

const empty_msg = try showValue(allocator, empty);
defer allocator.free(empty_msg);
try stdout.print("empty -> {s}\n", .{empty_msg});
} }
</syntaxhighlight> </syntaxhighlight>

;Execution results:<syntaxhighlight lang="output"> <syntaxhighlight lang="output">
full -> The value is: 42 full -> The value is: 42
empty -> No value empty -> No value

Revision as of 22:26, 5 October 2022

Encapsulation of an optional value in programming or type theory For families of option contracts in finance, see Option style.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Option type" – news · newspapers · books · scholar · JSTOR (July 2019) (Learn how and when to remove this message)
This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (July 2019) (Learn how and when to remove this message)
(Learn how and when to remove this message)

In programming languages (especially functional programming languages) and type theory, an option type or maybe type is a polymorphic type that represents encapsulation of an optional value; e.g., it is used as the return type of functions which may or may not return a meaningful value when they are applied. It consists of a constructor which either is empty (often named None or Nothing), or which encapsulates the original data type A (often written Just A or Some A).

A distinct, but related concept outside of functional programming, which is popular in object-oriented programming, is called nullable types (often expressed as A?). The core difference between option types and nullable types is that option types support nesting (e.g. Maybe (Maybe String)Maybe String), while nullable types do not (e.g. String?? = String?).

Theoretical aspects

This section has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This section may contain information not important or relevant to the article's subject. Please help improve this section. (July 2019) (Learn how and when to remove this message)
This section possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (August 2019) (Learn how and when to remove this message)
(Learn how and when to remove this message)

In type theory, it may be written as: A ? = A + 1 {\displaystyle A^{?}=A+1} . This expresses the fact that for a given set of values in A {\displaystyle A} , an option type adds exactly one additional value (the empty value) to the set of valid values for A {\displaystyle A} . This is reflected in programming by the fact that in languages having tagged unions, option types can be expressed as the tagged union of the encapsulated type plus a unit type.

In the Curry–Howard correspondence, option types are related to the annihilation law for ∨: x∨1=1.

An option type can also be seen as a collection containing either one or zero elements.

The option type is also a monad where:

return = Just -- Wraps the value into a maybe
Nothing  >>= f = Nothing -- Fails if the previous monad fails
(Just x) >>= f = f x     -- Succeeds when both monads succeed

The monadic nature of the option type is useful for efficiently tracking failure and errors.

Examples

Agda

This section needs expansion with: example usage. You can help by adding to it. (July 2022)
Further information: Agda (programming language)

In Agda, the option type is named Maybe with variants nothing and just a.

Coq

This section needs expansion with: example usage. You can help by adding to it. (July 2022)
Further information: Coq

In Coq, the option type is defined as Inductive option (A:Type) : Type := | Some : A -> option A | None : option A..

Elm

This section needs expansion with: example usage. You can help by adding to it. (July 2022)
Further information: Elm (programming language)

In Elm, the option type is defined as type Maybe a = Just a | Nothing.

F#

This section needs expansion with: the definition. You can help by adding to it. (July 2022)
Further information: F Sharp (programming language)
let showValue =
    Option.fold (fun _ x -> sprintf "The value is: %d" x) "No value"
let full = Some 42
let empty = None
showValue full |> printfn "showValue full -> %s"
showValue empty |> printfn "showValue empty -> %s"
showValue full -> The value is: 42
showValue empty -> No value

Haskell

Further information: Haskell (programming language)

In Haskell, the option type is defined as data Maybe a = Nothing | Just a.

showValue :: Maybe Int -> String
showValue = foldl (\_ x -> "The value is: " ++ show x) "No value"
main :: IO ()
main = do
    let full = Just 42
    let empty = Nothing
    putStrLn $ "showValue full -> " ++ showValue full
    putStrLn $ "showValue empty -> " ++ showValue empty
showValue full -> The value is: 42
showValue empty -> No value

Idris

Further information: Idris (programming language)

In Idris, the option type is defined as data Maybe a = Nothing | Just a.

showValue : Maybe Int -> String
showValue = foldl (\_, x => "The value is " ++ show x) "No value"
main : IO ()
main = do
    let full = Just 42
    let empty = Nothing
    putStrLn $ "showValue full -> " ++ showValue full
    putStrLn $ "showValue empty -> " ++ showValue empty
showValue full -> The value is: 42
showValue empty -> No value

Nim

This section needs expansion with: the definition. You can help by adding to it. (July 2022)
Further information: Nim (programming language)
import std/options
proc showValue(opt: Option): string =
  opt.map(proc (x: int): string = "The value is: " & $x).get("No value")
let
  full = some(42)
  empty = none(int)
echo "showValue(full) -> ", showValue(full)
echo "showValue(empty) -> ", showValue(empty)
showValue(full) -> The Value is: 42
showValue(empty) -> No value

OCaml

Further information: OCaml

In OCaml, the option type is defined as type 'a option = None | Some of 'a.

let show_value =
  Option.fold ~none:"No value" ~some:(fun x -> "The value is: " ^ string_of_int x)
let () =
  let full = Some 42 in
  let empty = None in
  print_endline ("show_value full -> " ^ show_value full);
  print_endline ("show_value empty -> " ^ show_value empty)
show_value full -> The value is: 42
show_value empty -> No value

Rust

Further information: Rust (programming language)

In Rust, the option type is defined as enum Option<T> { None, Some(T) }.

fn show_value(opt: Option<i32>) -> String {
    opt.map_or("No value".to_owned(), |x| format!("The value is: {}", x))
}
fn main() {
    let full = Some(42);
    let empty = None;
    println!("show_value(full) -> {}", show_value(full));
    println!("show_value(empty) -> {}", show_value(empty));
}
show_value(full) -> The value is: 42
show_value(empty) -> No value

Scala

Further information: Scala (programming language)

In Scala, the option type is defined as sealed abstract class Option, a type extended by final case class Some(value: A) and case object None.

object Main {
  def showValue(opt: Option): String =
    opt.fold("No value")(x => s"The value is: $x")
  def main(args: Array): Unit = {
    val full = Some(42)
    val empty = None
    println(s"showValue(full) -> ${showValue(full)}")
    println(s"showValue(empty) -> ${showValue(empty)}")
  }
}
showValue(full) -> The value is: 42
showValue(empty) -> No value

Standard ML

This section needs expansion with: example usage. You can help by adding to it. (July 2022)
Further information: Standard ML

In Standard ML, the option type is defined as datatype 'a option = NONE | SOME of 'a.

Swift

Further information: Swift (programming language)

In Swift, the option type is defined as enum Optional<T> { case none, some(T) } but is generally written as T?.

func showValue(_ opt: Int?) -> String {
    return opt.map { "The value is: \($0)" } ?? "No value"
}
let full = 42
let empty: Int? = nil
print("showValue(full) -> \(showValue(full))")
print("showValue(empty) -> \(showValue(empty))")
showValue(full) -> The value is: 42
showValue(empty) -> No value

Zig

Further information: Zig (programming language)

In Zig, add ? before the type name like ?32 to make it optional type.

Payload n can be captured in an if or while statement, such as if (opt) |n| { ... } else { ... }, and an else clause is evaluated if it is null.

const std = @import("std");
fn showValue(allocator: std.mem.Allocator, opt: ?i32) !u8 {
    return if (opt) |n|
        std.fmt.allocPrint(allocator, "The value is: {}", .{n})
    else
        std.fmt.allocPrint(allocator, "No value", .{});
}
pub fn main() !void {
    // Set up an allocator, and warn if we forget to free any memory.
    var gpa = std.heap.GeneralPurposeAllocator(.{}){};
    defer std.debug.assert(!gpa.deinit());
    const allocator = gpa.allocator();
    // Prepare the standard output stream.
    const stdout = std.io.getStdOut().writer();
    // Perform our example.
    const full = 42;
    const empty = null;
    const full_msg = try showValue(allocator, full);
    defer allocator.free(full_msg);
    try stdout.print("full -> {s}\n", .{full_msg});
    const empty_msg = try showValue(allocator, empty);
    defer allocator.free(empty_msg);
    try stdout.print("empty -> {s}\n", .{empty_msg});
}
full -> The value is: 42 
empty -> No value

See also

References

  1. Milewski, Bartosz (2015-01-13). "Simple Algebraic Data Types". Bartosz Milewski's Programming Cafe. Sum types. "We could have encoded Maybe as: data Maybe a = Either () a". Archived from the original on 2019-08-18. Retrieved 2019-08-18.
  2. "A Fistful of Monads - Learn You a Haskell for Great Good!". www.learnyouahaskell.com. Retrieved 2019-08-18.
  3. Hutton, Graham (Nov 25, 2017). "What is a Monad?". Computerphile Youtube. Archived from the original on 2021-12-20. Retrieved Aug 18, 2019.
  4. "Maybe · An Introduction to Elm". guide.elm-lang.org.
  5. "6 Predefined Types and Classes". www.haskell.org. Retrieved 2022-06-15.
  6. "OCaml library : Option". v2.ocaml.org. Retrieved 2022-06-15.
  7. "Option in core::option - Rust". doc.rust-lang.org. 2022-05-18. Retrieved 2022-06-15.
  8. "Apple Developer Documentation". developer.apple.com. Retrieved 2020-09-06.
Data types
Uninterpreted
Numeric
Pointer
Text
Composite
Other
Related
topics
Categories:
Option type: Difference between revisions Add topic