Misplaced Pages

2025 in paleomammalogy: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 18:13, 8 January 2025 editMacrochelys (talk | contribs)Extended confirmed users11,607 edits Laurasiatherians← Previous edit Revision as of 18:49, 9 January 2025 edit undoMacrochelys (talk | contribs)Extended confirmed users11,607 edits General mammalian researchNext edit →
Line 586: Line 586:


==General mammalian research== ==General mammalian research==
* Evidence from the study of morphology, puncture performance and breakage resistance of saber teeth, interpreted as indicating that repeated evolution of saber teeth in mammalian carnivores is a result of selection for functionally optimal morphology, is presented by Pollock et al. (2025).<ref>{{Cite journal|last1=Pollock |first1=T. I. |last2=Deakin |first2=W. J. |last3=Chatar |first3=N. |last4=Milla Carmona |first4=P. S. |last5=Rovinsky |first5=D. S. |last6=Panagiotopoulou |first6=O. |last7=Parker |first7=W. M. G. |last8=Adams |first8=J. W. |last9=Hocking |first9=D. P. |last10=Donoghue |first10=P. C. J. |last11=Rayfield |first11=E. J. |last12=Evans |first12=A. R. |year=2025 |title=Functional optimality underpins the repeated evolution of the extreme "saber-tooth" morphology |journal=Current Biology |doi=10.1016/j.cub.2024.11.059 |doi-access=free }}</ref>
* Gelabert et al. (2025) study sedimentary ancient DNA from the ] (]), reporting evidence of presence of 28 taxa (humans, 21 herbivores and 6 carnivores), evidence of longer survival of leopards and hyenas in the Iberian Peninsula than indicated by fossil record, and evidence of the presence of a stable human population in the region of the cave during and after the ].<ref>{{Cite journal|last1=Gelabert |first1=P. |last2=Oberreiter |first2=V. |last3=Straus |first3=L. G. |last4=González Morales |first4=M. R. |last5=Sawyer |first5=S. |last6=Marín-Arroyo |first6=A. B. |last7=Geiling |first7=J. M. |last8=Exler |first8=F. |last9=Brueck |first9=F. |last10=Franz |first10=S. |last11=Tenorio Cano |first11=F. |last12=Szedlacsek |first12=S. |last13=Zelger |first13=E. |last14=Hämmerle |first14=M. |last15=Zagorc |first15=B. |last16=Llanos-Lizcano |first16=A. |last17=Cheronet |first17=O. |last18=Tejero |first18=J.-M. |last19=Rattei |first19=T. |last20=Kraemer |first20=S. M. |last21=Pinhasi |first21=R. |year=2025 |title=A sedimentary ancient DNA perspective on human and carnivore persistence through the Late Pleistocene in El Mirón Cave, Spain |journal=Nature Communications |volume=16 |issue=1 |at=107 |doi=10.1038/s41467-024-55740-7 |doi-access=free }}</ref> * Gelabert et al. (2025) study sedimentary ancient DNA from the ] (]), reporting evidence of presence of 28 taxa (humans, 21 herbivores and 6 carnivores), evidence of longer survival of leopards and hyenas in the Iberian Peninsula than indicated by fossil record, and evidence of the presence of a stable human population in the region of the cave during and after the ].<ref>{{Cite journal|last1=Gelabert |first1=P. |last2=Oberreiter |first2=V. |last3=Straus |first3=L. G. |last4=González Morales |first4=M. R. |last5=Sawyer |first5=S. |last6=Marín-Arroyo |first6=A. B. |last7=Geiling |first7=J. M. |last8=Exler |first8=F. |last9=Brueck |first9=F. |last10=Franz |first10=S. |last11=Tenorio Cano |first11=F. |last12=Szedlacsek |first12=S. |last13=Zelger |first13=E. |last14=Hämmerle |first14=M. |last15=Zagorc |first15=B. |last16=Llanos-Lizcano |first16=A. |last17=Cheronet |first17=O. |last18=Tejero |first18=J.-M. |last19=Rattei |first19=T. |last20=Kraemer |first20=S. M. |last21=Pinhasi |first21=R. |year=2025 |title=A sedimentary ancient DNA perspective on human and carnivore persistence through the Late Pleistocene in El Mirón Cave, Spain |journal=Nature Communications |volume=16 |issue=1 |at=107 |doi=10.1038/s41467-024-55740-7 |doi-access=free }}</ref>



Revision as of 18:49, 9 January 2025

Overview of the events of 2025 in paleomammalogy
List of years in paleomammalogy
In paleontology
2022
2023
2024
2025
2026
2027
2028
In paleobotany
2022
2023
2024
2025
2026
2027
2028
In arthropod paleontology
2022
2023
2024
2025
2026
2027
2028
In paleoentomology
2022
2023
2024
2025
2026
2027
2028
In paleomalacology
2022
2023
2024
2025
2026
2027
2028
In paleoichthyology
2022
2023
2024
2025
2026
2027
2028
In reptile paleontology
2022
2023
2024
2025
2026
2027
2028
In archosaur paleontology
2022
2023
2024
2025
2026
2027
2028

This article records new taxa of fossil mammals of every kind that are scheduled to be described during the year 2025, as well as other significant discoveries and events related to paleontology of mammals that are scheduled to occur in the year 2025.

Euarchontoglires

Primates

Primate research

  • A study on the morphology and affinities of Kapi ramnagarensis is published by Gilbert et al. (2025), who interpret the studied primate as a stem-hylobatid.

General paleoanthropology

  • Lawrence, Hammond & Ward (2025) compare the orientation of the acetabulum in fossil hominins and extant primates, reporting evidence of humanlike condition in early Australopithecus.
  • Zanolli et al. (2025) study the anatomy and affinities of the Pleistocene hominin mandible SK 15 from Swartkrans Member 2, South Africa (the holotype of Telanthropus capensis), and interpret this specimen as belonging to a previously unrecognized species of Paranthropus, P. capensis.
  • Evidence from the study of starch grains found on basalt tools from the Gesher Benot Ya'aqov site (Israel), indicating that Middle Pleistocene hominins from the site processed diverse plants, is preserved by Ahituv et al. (2025).

Laurasiatherians

Artiodactyls

Cetaceans

Name Novelty Status Authors Age Type locality Country Notes Images

Cochimicetus

Gen. et sp. nov

Valid

Cedillo-Avila, González-Barba & Solis-Añorve

Oligocene

San Gregorio Formation

 Mexico

A member of the family Eomysticetidae. The type species is C. convexus.

Other artiodactyls

Name Novelty Status Authors Age Type locality Country Notes Images

Aegyptomeryx

Gen. et sp. nov

In press

Pickford & Gawad

Miocene

 Egypt

An anthracothere. Genus includes new species A. grandis.

Masrimeryx

Gen. et comb. nov

In press

Pickford & Gawad

Miocene

 Egypt

An anthracothere. Genus includes "Afromeryx" palustris Miller et al. (2014).

Mogharameryx

Gen. et comb. nov

In press

Pickford & Gawad

Miocene

 Egypt

An anthracothere. Genus includes "Brachyodus" mogharensis Pickford (1991).

Perissodactyls

Perissodactyl research

  • Pandolfi et al. (2025) describe new fossil material of Tapirus priscus from the Vallesian strata of the Vallès-Penedès Basin (Spain), providing new information on the anatomy of members of the species and extending its known chronostratigraphic range in Western Europe.

Xenarthrans

Cingulatans

Cingulatan research

  • A study on the morphology of the osteoderms of Quaternary pampatheriids and a revision of their taxonomy is published by Ferreira et al. (2025)

General mammalian research

  • Evidence from the study of morphology, puncture performance and breakage resistance of saber teeth, interpreted as indicating that repeated evolution of saber teeth in mammalian carnivores is a result of selection for functionally optimal morphology, is presented by Pollock et al. (2025).
  • Gelabert et al. (2025) study sedimentary ancient DNA from the El Mirón Cave (Spain), reporting evidence of presence of 28 taxa (humans, 21 herbivores and 6 carnivores), evidence of longer survival of leopards and hyenas in the Iberian Peninsula than indicated by fossil record, and evidence of the presence of a stable human population in the region of the cave during and after the Last Glacial Maximum.

References

  1. Gilbert, C. C.; Ortiz, A.; Pugh, K. D.; Campisano, C. J.; Patel, B. A.; Singh, N. P.; Fleagle, J. G.; Patnaik, R. (2025). "Additional analyses of stem catarrhine and hominoid dental morphology support Kapi ramnagarensis as a stem hylobatid". Journal of Human Evolution. 199. 103628. doi:10.1016/j.jhevol.2024.103628.
  2. Lawrence, A. B.; Hammond, A. S.; Ward, C. V. (2025). "Acetabular orientation, pelvic shape, and the evolution of hominin bipedality". Journal of Human Evolution. 200. 103633. doi:10.1016/j.jhevol.2024.103633.
  3. Zanolli, C.; Hublin, J.-J.; Kullmer, O.; Schrenk, F.; Kgasi, L.; Tawane, M.; Xing, S. (2025). "Taxonomic revision of the SK 15 mandible based on bone and tooth structural organization". Journal of Human Evolution. 200. 103634. doi:10.1016/j.jhevol.2024.103634.
  4. Ahituv, H.; Henry, A. G.; Melamed, Y.; Goren-Inbar, N.; Bakels, C.; Shumilovskikh, L.; Cabanes, D.; Stone, J. R.; Rowe, W. F.; Alperson-Afil, N. (2025). "Starch-rich plant foods 780,000 y ago: Evidence from Acheulian percussive stone tools". Proceedings of the National Academy of Sciences of the United States of America. 122 (3). e2418661121. doi:10.1073/pnas.2418661121.
  5. Cedillo-Avila, C.; González-Barba, G.; Solis-Añorve, A. (2025). "First record of an Eomysticetidae from the Late Oligocene at the Pilon locality, San Gregorio Formation, Baja California Sur, Mexico". Palaeontologia Electronica. 28 (1). 28.1.a1. doi:10.26879/1390.
  6. ^ Pickford, M.; Gawad, M. A. (2025). "Revision of Large Anthracotheres from the Early Miocene of Moghara, Egypt". Münchner Geowissenschaftliche Abhandlungen Reihe A: Geologie und Paläontologie. 54: 1–96. ISBN 978-3-89937-300-4.
  7. Pandolfi, L.; Arranz, S. G.; Almécija, S.; Galindo, J.; Luján, À. H.; Pina, M.; Urciuoli, A.; Casanovas-Vilar, I.; Alba, D. M. (2025). "Late Miocene Tapiridae from Vallès-Penedès Basin (NE Iberian Peninsula): taxonomic and paleoenvironmental implications". Swiss Journal of Palaeontology. 144. 3. doi:10.1186/s13358-024-00342-5.
  8. Ferreira, T. M. P.; Casali, D. M.; Neves, S. B.; Ribeiro, A. M. (2025). "Osteoderm morphology and taxonomy of Pampatheriidae (Cingulata, Xenarthra) from the Quaternary of the Neotropical region". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2024.2439939.
  9. Pollock, T. I.; Deakin, W. J.; Chatar, N.; Milla Carmona, P. S.; Rovinsky, D. S.; Panagiotopoulou, O.; Parker, W. M. G.; Adams, J. W.; Hocking, D. P.; Donoghue, P. C. J.; Rayfield, E. J.; Evans, A. R. (2025). "Functional optimality underpins the repeated evolution of the extreme "saber-tooth" morphology". Current Biology. doi:10.1016/j.cub.2024.11.059.
  10. Gelabert, P.; Oberreiter, V.; Straus, L. G.; González Morales, M. R.; Sawyer, S.; Marín-Arroyo, A. B.; Geiling, J. M.; Exler, F.; Brueck, F.; Franz, S.; Tenorio Cano, F.; Szedlacsek, S.; Zelger, E.; Hämmerle, M.; Zagorc, B.; Llanos-Lizcano, A.; Cheronet, O.; Tejero, J.-M.; Rattei, T.; Kraemer, S. M.; Pinhasi, R. (2025). "A sedimentary ancient DNA perspective on human and carnivore persistence through the Late Pleistocene in El Mirón Cave, Spain". Nature Communications. 16 (1). 107. doi:10.1038/s41467-024-55740-7.
Categories:
2025 in paleomammalogy: Difference between revisions Add topic