Revision as of 16:19, 19 March 2006 edit87.78.112.51 (talk) →Electrical Characteristics← Previous edit | Revision as of 16:39, 19 March 2006 edit undo87.78.119.93 (talk) →ProcedureNext edit → | ||
Line 13: | Line 13: | ||
== Procedure == | == Procedure == | ||
To perform EMG, ] ]s are inserted through the ] into the muscle tissue. Each electrode gives only |
To perform EMG, ] ]s are inserted through the ] into the muscle tissue. Each electrode gives only a local picture of the activity of the whole muscle. Because ]s may differ in it inner structure, the electrode has to be placed at various locations to obtain an accurate study. Then the patient is asked to contract the muscle smoothly. Each ] (all muscle fibres innervated by a single nerve fibre) that contracts produces an '']'' (a change in electrical potential), which is displayed on the electromyogram. The form of the action potential provides information about the ability of the muscle to respond when the nerves are stimulated. The composition of the motor unit, the number of muscle fibres per motor unit, the metabolic type of muscle fibres and many other factors affect the shape of the action potentials on the myograph. | ||
A ] test is often done at the same time as an EMG. | A ] test is often done at the same time as an EMG. | ||
Because of the needle electrodes, EMG may be somewhat painful to the patient, and the muscle may feel tender for a few days. |
Because of the needle electrodes, EMG may be somewhat painful to the patient, and the muscle may feel tender for a few days. However, so called "needleless EMG"—an EMG performed using surface electrodes—. will not give the information required for neurological diagnosis. | ||
== Normal results == | == Normal results == |
Revision as of 16:39, 19 March 2006
Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. EMG is performed using an instrument called an electromyograph, to produce a record called an electromyogram. An electromyograph detects the electrical potential generated by muscle cells when these cells contract.
Electrical Characteristics
Electrical source is the muscle membran potential, about -70mV. Due to the applied method the resulting measured potentials might range between 50uV and some mV.
Typical repetition rate of muscle unit firing is about 7-20Hz, depending of the size of the muscle (eye muscles versus seat (gluteal) muscles), previous axonal damage and other factors.
Uses
EMG can help to distinguish primary muscle conditions from muscle weakness caused by neurologic disorders. It can be used to differentiate between true weakness and reduced use due to pain or lack of motivation. It is used to find causes of weakness, paralysis, involuntary twitching, and abnormal levels of muscle enzymes. It can help diagnose neuromuscular disorders such as Motor Neurone Disease, neuropathy, nerve damage and muscle damage. See #Abnormal results.
Electromyography is also used in biofeedback studies and training. Electromyography training is a kind of biofeedback in which patients learn to control muscle tension in the face, neck, and shoulders. For example, such training is sometimes given to migraine patients.
Procedure
To perform EMG, needle electrodes are inserted through the skin into the muscle tissue. Each electrode gives only a local picture of the activity of the whole muscle. Because skeletal muscles may differ in it inner structure, the electrode has to be placed at various locations to obtain an accurate study. Then the patient is asked to contract the muscle smoothly. Each motor unit (all muscle fibres innervated by a single nerve fibre) that contracts produces an action potential (a change in electrical potential), which is displayed on the electromyogram. The form of the action potential provides information about the ability of the muscle to respond when the nerves are stimulated. The composition of the motor unit, the number of muscle fibres per motor unit, the metabolic type of muscle fibres and many other factors affect the shape of the action potentials on the myograph.
A nerve conduction velocity test is often done at the same time as an EMG.
Because of the needle electrodes, EMG may be somewhat painful to the patient, and the muscle may feel tender for a few days. However, so called "needleless EMG"—an EMG performed using surface electrodes—. will not give the information required for neurological diagnosis.
Normal results
Muscle tissue at rest is normally electrically inactive. After the activity caused by the trauma of needle insertion subsides, the electromyograph should detect no action potential. When the muscle is voluntarily contracted, action potentials begin to appear. As contraction is increased, more and more muscle fibers produce action potentials. When the muscle is fully contracted, there should appear a disorderly group of action potentials of varying rates and amplitudes (a complete recruitment and interference pattern).
Abnormal results
Abnormal results may be caused by the following medical conditions:
- Alcoholic neuropathy
- Axillary nerve dysfunction
- Becker's muscular dystrophy
- Brachial plexopathy
- Carpal tunnel syndrome
- Cervical spondylosis
- Common peroneal nerve dysfunction
- Denervation (reduced nervous stimulation)
- Dermatomyositis
- Distal median nerve dysfunction
- Duchenne's muscular dystrophy
- Facioscapulohumeral muscular dystrophy (Landouzy-Dejerine)
- Familial periodic paralysis
- Femoral nerve dysfunction
- Fields condition
- Friedreich's ataxia
- Guillain-Barre
- Lambert-Eaton Syndrome
- Mononeuritis multiplex
- Mononeuropathy
- Motor neurone disease
- Myasthenia gravis
- Myopathy (muscle degeneration, which may be caused by a number of disorders, including muscular dystrophy)
- Peripheral neuropathy
- Poliomyelitis
- Polymyositis
- Radial nerve dysfunction
- Sciatic nerve dysfunction
- Sensorimotor polyneuropathy
- Shy-Drager syndrome
- Thyrotoxic periodic paralysis
- Tibial nerve dysfunction
- Ulnar nerve dysfunction
References
- MedlinePlus entry on EMG describes EMG
- University of Oklahoma Health Sciences Center describes the electromyograph