Misplaced Pages

Ancient Greek units of measurement: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 11:24, 10 December 2013 editKhamis Mushat (talk | contribs)64 editsNo edit summary← Previous edit Revision as of 13:38, 10 December 2013 edit undoAnomieBOT (talk | contribs)Bots6,588,574 edits Fixing reference errorsNext edit →
Line 542: Line 542:
==References== ==References==
{{Reflist|refs=<ref name = Tzonis> Tzonis, A. and Lefaivre L., Classical Architecture: The Poetics of Order (1986), MIT Press. ISBN 0-262-20059-7</ref> {{Reflist|refs=<ref name = Tzonis> Tzonis, A. and Lefaivre L., Classical Architecture: The Poetics of Order (1986), MIT Press. ISBN 0-262-20059-7</ref>
<ref name = Pythagorean Harmony> Dictionary of the History of Ideas, Pythagorean Harmony</ref><ref name = Padovan> Padovan, R., Proportion: Science, Philosophy, Architecture (1999), Routledge. ISBN 0-419-22780-6 </ref> <ref name="Pythagorean Harmony"> Dictionary of the History of Ideas, Pythagorean Harmony</ref><ref name = Padovan> Padovan, R., Proportion: Science, Philosophy, Architecture (1999), Routledge. ISBN 0-419-22780-6 </ref>
<ref name = Langheim> Langhein, J., Proportion and Traditional Architecture (2005), INTBAU Essay (London, The Prince's Foundation </ref> <ref name = Langheim> Langhein, J., Proportion and Traditional Architecture (2005), INTBAU Essay (London, The Prince's Foundation </ref>
<ref name = Cordingly> R. A. Cordingley (1951). Norman's Parallel of the Orders of Architecture. Alex Trianti Ltd.</ref> <ref name = Cordingly> R. A. Cordingley (1951). Norman's Parallel of the Orders of Architecture. Alex Trianti Ltd.</ref>
<ref name = Georges> Georges Gromort Richard Sammons Introductory Essay (2007). Theory of Mouldings (Classical America Series in Art and Architecture). W. W. Norton & Co.</ref> <ref name = Georges> Georges Gromort Richard Sammons Introductory Essay (2007). Theory of Mouldings (Classical America Series in Art and Architecture). W. W. Norton & Co.</ref>
<ref name = Walker> C Howard Walker (Author) Richard Sammons (Foreword) (2001). The Elements of Classical Architecture (Classical America Series in Art and Architecture). W. W. Norton & Co.</ref><ref name = Palladio> Learning From Palladio ; Branko Mitrovic (Author) ; W. W. Norton & Company (May 2004) ; ISBN 0393731162</ref><ref name = Vitruvus> Vitruvus (1960). The Ten Books on Architecture. Dover.</ref> <ref name = Walker> C Howard Walker (Author) Richard Sammons (Foreword) (2001). The Elements of Classical Architecture (Classical America Series in Art and Architecture). W. W. Norton & Co.</ref><ref name = Palladio> Learning From Palladio ; Branko Mitrovic (Author) ; W. W. Norton & Company (May 2004) ; ISBN 0393731162</ref><ref name = Vitruvus> Vitruvus (1960). The Ten Books on Architecture. Dover.</ref>
<ref name = Ptolomy> Claudias Ptolemy (1991). The Geography. Dover. ISBN 048626896 Check |isbn= value (help).</ref><ref name = Herodotus> Herodotus (1952). The History. William Brown. War with Judah, Sennacherib, siege of 701 BC </ref><ref name = name= Grant> Michael Grant (1987). The Rise of the Greeks. Charles Scribners Sons.</ref><ref name = Bunt> Lucas N. H. Bunt, Phillip S. Jones, Jack D. Bedient (1976). The Historical Roots of Elementary Mathematics. Dover. ISBN 0486255638.</ref><ref name = Klein> H Arthur Klein (1976). The World of Measurements. Simon and Schuster.</ref><ref name = Moffitt> Francis H. Moffitt (1987). Surveying. Harper & Row. ISBN 0060445548.</ref><ref name = McNeil & Sedlar> William H McNeil and Jean W Sedlar, (1962). The Ancient Near East. OUP.</ref><ref name = Andrew George> Andrew George, (2000). The Epic of Gillgamesh. Penguin. ISBN =0140449191</ref><ref name = Pritchard> James B. Pritchard, (1968). The Ancient Near East. OUP.</ref><ref name = Michael Roaf> Michael Roaf (1990). Cultural Atlas of Mesopotamia and the Ancient Near East. Equinox. ISBN 0-8160-2218-6.</ref><ref name = Gerard Herm> Gerard Herm (1975). The Phoenicians. William Morrow^ Co. Inc. ISBN 0-688-02908-6.</ref><ref name = Gardiner> Gardiner (1990). Egyptian Grammar. Griffith Institute. ISBN 0900416351.</ref><ref name = Loprieno> Antonio Loprieno (1995). Ancient Egyptian. CUP. ISBN 0-521-44849-2.</ref><ref name = Rice> Michael Rice (1990). Egypt's Making. Routledge. ISBN 0-415-06454-6.</ref><ref name = Gillings> Gillings (1972). Mathematics in the time of the Pharaohs. MIT Press. ISBN 0262070456.</ref><ref name = Clarke & Englebach> Somers Clarke and R. Englebach (1990). Ancient Egyptian Construction and Architecture. Dover. ISBN 0486264858.</ref><ref name = Thomsen> Marie-Loise Thomsen, (1984). Mesopotamia 10 The Sumerian Language. Academic Press. ISBN 87-500-3654-8.</ref><ref name = Luraghi> Silvia Luraghi (1990). Old Hittite Sentence Structure. Routledge. ISBN 0415047358.</ref><ref name = Mallory> J. P. Mallory (1989). In Search of the Indo Europeans. Thames and Hudson. ISBN 050027616-1.</ref><ref name = Groton> Anne H. Groton (1995). From Alpha to Omega. Focus Information group. ISBN 0941051382.</ref><ref name = Hines> Hines (1981). Our Latin Heritage. Harcourt Brace. ISBN 0153894687.</ref><ref name=EIM>EIM:Metrology:History. Hellenic Institute of Metrology (EIM).</ref><ref name=hutton>Hutton, Charles (1795) 1st ed. London: for J. Johnson Volume 2 p.187</ref><ref name=measures>{{cite encyclopedia|title=Measures|encyclopedia=The Oxford Classical Dictionary|year=2003}}</ref><ref name=smith>Smith, Sir William; Charles Anthon (1851) New York: Harper & Bros. Tables, pp. 1024–30</ref><ref name=weights>{{cite encyclopedia|title=Weights|encyclopedia=The Oxford Classical Dictionary|year=2003}}</ref> <ref name = Ptolomy> Claudias Ptolemy (1991). The Geography. Dover. ISBN 048626896 Check |isbn= value (help).</ref><ref name = Herodotus> Herodotus (1952). The History. William Brown. War with Judah, Sennacherib, siege of 701 BC </ref><ref name= Grant> Michael Grant (1987). The Rise of the Greeks. Charles Scribners Sons.</ref><ref name = Bunt> Lucas N. H. Bunt, Phillip S. Jones, Jack D. Bedient (1976). The Historical Roots of Elementary Mathematics. Dover. ISBN 0486255638.</ref><ref name = Klein> H Arthur Klein (1976). The World of Measurements. Simon and Schuster.</ref><ref name = Moffitt> Francis H. Moffitt (1987). Surveying. Harper & Row. ISBN 0060445548.</ref><ref name="McNeil & Sedlar"> William H McNeil and Jean W Sedlar, (1962). The Ancient Near East. OUP.</ref><ref name="Andrew George"> Andrew George, (2000). The Epic of Gillgamesh. Penguin. ISBN =0140449191</ref><ref name = Pritchard> James B. Pritchard, (1968). The Ancient Near East. OUP.</ref><ref name="Michael Roaf"> Michael Roaf (1990). Cultural Atlas of Mesopotamia and the Ancient Near East. Equinox. ISBN 0-8160-2218-6.</ref><ref name="Gerard Herm"> Gerard Herm (1975). The Phoenicians. William Morrow^ Co. Inc. ISBN 0-688-02908-6.</ref><ref name = Gardiner> Gardiner (1990). Egyptian Grammar. Griffith Institute. ISBN 0900416351.</ref><ref name = Loprieno> Antonio Loprieno (1995). Ancient Egyptian. CUP. ISBN 0-521-44849-2.</ref><ref name = Rice> Michael Rice (1990). Egypt's Making. Routledge. ISBN 0-415-06454-6.</ref><ref name = Gillings> Gillings (1972). Mathematics in the time of the Pharaohs. MIT Press. ISBN 0262070456.</ref><ref name="Clarke & Englebach"> Somers Clarke and R. Englebach (1990). Ancient Egyptian Construction and Architecture. Dover. ISBN 0486264858.</ref><ref name = Thomsen> Marie-Loise Thomsen, (1984). Mesopotamia 10 The Sumerian Language. Academic Press. ISBN 87-500-3654-8.</ref><ref name = Luraghi> Silvia Luraghi (1990). Old Hittite Sentence Structure. Routledge. ISBN 0415047358.</ref><ref name = Mallory> J. P. Mallory (1989). In Search of the Indo Europeans. Thames and Hudson. ISBN 050027616-1.</ref><ref name = Groton> Anne H. Groton (1995). From Alpha to Omega. Focus Information group. ISBN 0941051382.</ref><ref name = Hines> Hines (1981). Our Latin Heritage. Harcourt Brace. ISBN 0153894687.</ref><ref name=EIM>EIM:Metrology:History. Hellenic Institute of Metrology (EIM).</ref><ref name=hutton>Hutton, Charles (1795) 1st ed. London: for J. Johnson Volume 2 p.187</ref><ref name=measures>{{cite encyclopedia|title=Measures|encyclopedia=The Oxford Classical Dictionary|year=2003}}</ref><ref name=smith>Smith, Sir William; Charles Anthon (1851) New York: Harper & Bros. Tables, pp. 1024–30</ref><ref name=weights>{{cite encyclopedia|title=Weights|encyclopedia=The Oxford Classical Dictionary|year=2003}}</ref>


}} }}

Revision as of 13:38, 10 December 2013

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Ancient Greek units of measurement" – news · newspapers · books · scholar · JSTOR (August 2011) (Learn how and when to remove this message)

Ancient Greek units of measurement varied according to location and epoch. Systems of ancient weights and measures evolved as needs changed; Solon and other lawgivers also reformed them en bloc. Some units of measurement were found to be convenient for trade within the Mediterranean region and these units became increasingly common to different city states. The calibration and use of measuring devices became more sophisticated. By about 500 BC, Athens had a central depository of official weights and measures, the Tholos, where merchants were required to test their measuring devices against official standards.

Length

Some Greek measures of length were named after parts of the body, such as the δάκτυλος (daktylos, plural: daktyloi) or finger, and the ποῦς (pous, plural: podes) or foot. The values of the units varied according to location and epoch (e.g., in Aegina a pous was approximately 333 mm (13.1 in), whereas in Athens (Attica) it was about 296 mm (11.7 in)), but the relative proportions were generally the same

Smaller units of length
Unit Greek name Equal to Metric equivalent Description
daktylos δάκτυλος 19.3 mm (0.76 in) finger
kondylos κόνδυλος 2 daktyloi 38.5 mm (1.52 in)
palaistē or dōron παλαιστή, δῶρον 4 daktyloi 77.1 mm (3.04 in) palm
dichas or hēmipodion διχάς, ἡμιπόδιον 8 daktyloi 154.1 mm (6.07 in) half foot
lichas λιχάς 10 daktyloi 192.6 mm (7.58 in)
orthodōron ὀρθόδωρον 11 daktyloi 211.9 mm (8.34 in)
spithamē σπιθαμή 12 daktyloi 231.2 mm (9.10 in) span of all fingers
pous ποῦς 16 daktyloi 308.2 mm (12.13 in) foot
pygmē πυγμή 18 daktyloi 346.8 mm (13.65 in)
pygōn πυγών 20 daktyloi 385.3 mm (15.17 in)
pēchys πῆχυς 24 daktyloi 462.3 mm (18.20 in) cubit
Except where noted, based on Smith (1851). Metric equivalents are approximate.
Larger units of length
Unit Greek name Equal to Metric equivalent Description
pous ποῦς 0.308 m (1.01 ft) foot
haploun bēma ἁπλοῦν βῆμα 2.5 podes 0.77 m (2.5 ft) single pace
bēma, diploun bēma βῆμα, διπλοῦν βῆμα 5 podes 1.54 m (5.1 ft) double pace
orgyia ὀργυιά 6 podes 1.85 m (6.1 ft) fathom
kalamos, akaina or dekapous κάλαμος, ἄκαινα, δεκάπους 10 podes 3.08 m (10.1 ft)
hamma ἅμμα 60 podes 18.5 m (20.2 yd)
plethron πλέθρον 100 podes 30.8 m (33.7 yd)
stadion στάδιον 600 podes 184.9 m (202.2 yd) approximately 1/10 of a modern mile
diaulos δίαυλος 2 stadia 369.9 m (404.5 yd)
hippikon ἱππικόν 4 stadia 739.7 m (808.9 yd)
milion μίλιον 8 stadia 1,479 m (1,617 yd) Roman mile
dolichos δόλιχος 12 stadia 2,219 m (1.379 mi)
parasanges, or league παρασάγγες 30 stadia 5,548 m (3.447 mi) adopted from Persia
schoinos σχοινός 40 stadia 7,397 m (4.596 mi) adopted from Egypt
stage 160 stadia 29,800 m (32,600 yd)
Except where noted, based on Smith (1851). Metric equivalents are approximate.

Area

The ordinary units used for land measurement were:

Units of surface measurement
Unit Greek name Equal to Metric equivalent Description
pous ποῦς 0.095 m  square foot
hexapodēs ἑξαπόδης 36 podes 3.42 m 
akaina ἄκαινα 100 podes 9.50 m 
hēmiektos ἡμίεκτος 8331⁄3 podes 79.2 m 
hektos ἕκτος 16662⁄3 podes 158.3 m  a sixth of a plethron
aroura ἄρουρα 2500 podes 237.5 m 
plethron πλέθρον 10000 podes 950 m 
Except where noted, based on Smith (1851). Metric equivalents are approximate.

Volume


Neck amphora depicting an athlete
running the hoplitodromos by the Berlin
Painter, ca. 480 BC, Louvre.

Greeks measured volume according to either dry or liquid capacity, suited respectively to measuring grain and wine. A common unit in both measures throughout historic Greece was the cotyle or cotyla whose absolute value varied from one place to another between 210 ml and 330 ml. The basic unit for both solid and liquid measures was the κύαθος (kyathos, plural: kyathoi).

The Attic liquid measures were:

Attic measures of liquid capacity
Unit Greek name Equal to Metric equivalent Description
kochliarion κοχλιάριον 4.5 ml  spoon
xēmē χήμη 2 kochliaria 9.1 ml 
mustron μύστρον 21⁄2 kochliaria 11.4 ml 
konchē κόγχη 5 kochliaria 22.7 ml 
kyathos κύαθος 10 kochliaria 45.5 ml 
oxybathon ᾿οξυβαθον 11⁄2 kyathoi 68.2 ml 
tetarton, hēmikotylē τέταρτον, ἡμικοτύλη 3 kyathoi 136.4 ml 
kotylē, trublion or hēmina κοτύλη, τρύβλιον, ἡμίνα 6 kyathoi 272.8 ml 
xestēs ξέστης 12 kyathoi 545.5 ml  Roman sextarius
chous χοῦς 72 kyathoi 3.27 l 
keramion κεράμιον 8 choes 26.2 l  Roman amphora
metrētēs μετρητής 12 choes 39.3 l  amphora
Except where noted, based on Smith (1851). Metric equivalents are approximate.

and the Attic dry measures of capacity were:

Attic measures of dry capacity
Unit Greek name Equal to Metric equivalent Description
kochliarion κοχλιάριον 4.5 ml 
kyathos κύαθος 10 kochliaria 45.5 ml 
oxybathon ᾿οξυβαθον 11⁄2 kyathoi 68.2 ml 
kotylē or hēmina κοτύλη, ἡμίνα 6 kyathoi 272.8 ml 
xestēs ξέστης 12 kyathoi 545.5 ml  Roman sextarius
choinix χοῖνιξ 24 kyathoi 1.09 l 
hēmiekton ἡμίεκτον 4 choinikes 4.36 l 
hecteus ἑκτεύς 8 choinikes 8.73 l  a sixth of a medimnos
medimnos μέδιμνος 48 choinikes 52.4 l 
Except where noted, based on Smith (1851). Metric equivalents are approximate.

Currency

The basic unit of Athenian currency was the obol, weighing approximately 0.72 grams of silver:

An obol, Attica, Athens. After 449 BC
Unit Greek name Equivalent Weight
obol or obolus ὀβολὸς 1/6 drachma, 4 tetartemorions 0.72 g
drachma δραχμὴ 6 obols 4.3 g
mina μνᾶ 100 drachmae
talent τάλαντον 60 minae

Weight

Weights are often associated with currency since units of currency involve prescribed amounts of a given metal. Thus for example the English pound has been both a unit of weight and a unit of currency. Greek weights similarly bear a nominal resemblance to Greek currency yet the origin of the Greek standards of weights is often disputed. There were two dominant standards of weight in the eastern Mediterranean - a standard that originated in Euboea and that was subsequently introduced to Attica by Solon, and also a standard that originated in Aegina. The Attic/Euboean standard was supposedly based on the barley corn, of which there were supposedly twelve to one obol. However, weights that have been retrieved by historians and archeologists show considerable variations from theoretical standards. A table of standards derived from theory is as follows:

Unit Greek name Equivalent Attic/Euboic standard Aeginetic standard
obol or obolus ὀβολός 0.72g 1.05g
drachma δραχμή 6 obols 4.31g 6.3g
mina μνᾶ 100 drachmae 431g 630g
talent τάλαντον 60 minae 25.86 kg 37.8 kg

Time

Athenians measured the day by sundials and unit fractions. Periods during night or day were measured by a water clock (clepsydra) that dripped at a steady rate and other methods. Whereas the day in the Gregorian calendar commences after midnight, the Greek day began after sunset. Athenians named each year after the Archon Eponymos for that year, and in Hellenistic times years were reckoned in quadrennial epochs according to the Olympiad.

In archaic and early classical Greece, months followed the cycle of the Moon which made them to not fit exactly into the solar year. Thus, if not corrected, the same month would migrate slowly in different seasons of the year. The Athenian year was divided into 12 months, with one additional month (poseideon deuteros, 30 days) being inserted between the sixth and seventh months every second year. Even with this intercalary month, the Athenian or Attic calendar was still fairly inaccurate and days had occasionally to be added by the Archon Basileus. The start of the year was at the summer solstice (previously it had been at the winter solstice) and months were named after Athenian religious festivals, 27 mentioned in the Hibah Papyrus, circ 275 BCE.

This section of a frieze from the Elgin Marbles shows a cavalry procession that was part of the quadrennial Greater Panathenaic festival, always held in the month Hekatombion.
Month Greek name Gregorian equivalent
Hecatombaeon Ἑκατομβαιών June–July
Metageitnion Μεταγειτνιών July-Aug
Boedromion Βοηδρομιών Aug-Sept
Pyanepsion Πυανεψιών Sept-Oct
Maemacterion Μαιμακτηριών Oct-Nov
Poseideon Ποσειδεών Nov-Dec
Gamelion Γαμηλιών Dec-Jan
Anthesterion Ἀνθεστηριών Jan-Feb
Elaphebolion Ἐλαφηβολιών Feb-March
Munychion Μουνυχιών March–April
Thargelion Θαργηλιών April–May
Scirophorion Σκιροφοριών May–June

See also

Template:Multicol

Template:Multicol-break

Template:Multicol-end

References

  1. Tzonis, A. and Lefaivre L., Classical Architecture: The Poetics of Order (1986), MIT Press. ISBN 0-262-20059-7
  2. Padovan, R., Proportion: Science, Philosophy, Architecture (1999), Routledge. ISBN 0-419-22780-6
  3. Langhein, J., Proportion and Traditional Architecture (2005), INTBAU Essay (London, The Prince's Foundation
  4. R. A. Cordingley (1951). Norman's Parallel of the Orders of Architecture. Alex Trianti Ltd.
  5. Georges Gromort Richard Sammons Introductory Essay (2007). Theory of Mouldings (Classical America Series in Art and Architecture). W. W. Norton & Co.
  6. C Howard Walker (Author) Richard Sammons (Foreword) (2001). The Elements of Classical Architecture (Classical America Series in Art and Architecture). W. W. Norton & Co.
  7. Learning From Palladio ; Branko Mitrovic (Author) ; W. W. Norton & Company (May 2004) ; ISBN 0393731162
  8. Vitruvus (1960). The Ten Books on Architecture. Dover.
  9. Claudias Ptolemy (1991). The Geography. Dover. ISBN 048626896 Check |isbn= value (help).
  10. Herodotus (1952). The History. William Brown. War with Judah, Sennacherib, siege of 701 BC
  11. Michael Grant (1987). The Rise of the Greeks. Charles Scribners Sons.
  12. Lucas N. H. Bunt, Phillip S. Jones, Jack D. Bedient (1976). The Historical Roots of Elementary Mathematics. Dover. ISBN 0486255638.
  13. H Arthur Klein (1976). The World of Measurements. Simon and Schuster.
  14. Francis H. Moffitt (1987). Surveying. Harper & Row. ISBN 0060445548.
  15. James B. Pritchard, (1968). The Ancient Near East. OUP.
  16. Gardiner (1990). Egyptian Grammar. Griffith Institute. ISBN 0900416351.
  17. Antonio Loprieno (1995). Ancient Egyptian. CUP. ISBN 0-521-44849-2.
  18. Michael Rice (1990). Egypt's Making. Routledge. ISBN 0-415-06454-6.
  19. Gillings (1972). Mathematics in the time of the Pharaohs. MIT Press. ISBN 0262070456.
  20. Marie-Loise Thomsen, (1984). Mesopotamia 10 The Sumerian Language. Academic Press. ISBN 87-500-3654-8.
  21. J. P. Mallory (1989). In Search of the Indo Europeans. Thames and Hudson. ISBN 050027616-1.
  22. Silvia Luraghi (1990). Old Hittite Sentence Structure. Routledge. ISBN 0415047358.
  23. Anne H. Groton (1995). From Alpha to Omega. Focus Information group. ISBN 0941051382.
  24. Hines (1981). Our Latin Heritage. Harcourt Brace. ISBN 0153894687.
  25. Hutton, Charles (1795) A philosophical and mathematical dictionary, containing an explanation of the terms, and an account of the several subjects, comprised under the heads mathematics, astronomy, and philosophy both natural and experimental; with an historical account of the rise, progress and present state of these sciences; also memoirs of the lives and writings of the most eminent authors, both ancient and modern, who by their discoveries or improvements have contributed to the advancement of them 1st ed. London: for J. Johnson Volume 2 p.187
  26. ^ "Measures". The Oxford Classical Dictionary. 2003.
  27. ^ Smith, Sir William; Charles Anthon (1851) A new classical dictionary of Greek and Roman biography, mythology, and geography partly based upon the Dictionary of Greek and Roman biography and mythology New York: Harper & Bros. Tables, pp. 1024–30
  28. ^ EIM:Metrology:History. Hellenic Institute of Metrology (EIM).Archived 13 April 2009
  29. ^ Xenophon, Anabasis. ca 400 B.C.
  30. British Museum Catalogue 11 - Attica Megaris Aegina
  31. ^ "Weights". The Oxford Classical Dictionary. 2003.

Cite error: A list-defined reference named "Pythagorean Harmony" is not used in the content (see the help page).
Cite error: A list-defined reference named "McNeil & Sedlar" is not used in the content (see the help page).
Cite error: A list-defined reference named "Andrew George" is not used in the content (see the help page).
Cite error: A list-defined reference named "Michael Roaf" is not used in the content (see the help page).
Cite error: A list-defined reference named "Gerard Herm" is not used in the content (see the help page).

Cite error: A list-defined reference named "Clarke & Englebach" is not used in the content (see the help page).

External links

Systems of measurement
Current
General
Specific
Natural
Background
Metric
UK/US
Historic
Metric
Europe
Asia
Africa
North America
South America
Ancient
List articles
Other
Categories:
Ancient Greek units of measurement: Difference between revisions Add topic