Misplaced Pages

Trace amine: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 18:50, 29 January 2016 editSeppi333 (talk | contribs)Autopatrolled, Extended confirmed users, Page movers, New page reviewers, Pending changes reviewers, Template editors35,350 edits c← Previous edit Revision as of 23:41, 29 January 2016 edit undoNiceguyedc (talk | contribs)Autopatrolled, Extended confirmed users, Page movers, Pending changes reviewers, Rollbackers413,304 editsm v1.38 - Repaired 1 link to disambiguation page - (You can help) - OctopamineTag: WPCleanerNext edit →
Line 12: Line 12:
'''Trace amines''' are an endogenous group of ]<ref name="pmid22038157">{{cite journal | author = Panas MW, Xie Z, Panas HN, Hoener MC, Vallender EJ, Miller GM | title = Trace amine associated receptor 1 signaling in activated lymphocytes | journal = J Neuroimmune Pharmacol | volume = 7 | issue = 4 | pages = 866–76 |date=December 2012 | pmid = 22038157 | pmc = 3593117 | doi = 10.1007/s11481-011-9321-4 | quote = Trace Amine Associated Receptor 1 (TAAR1) is a G protein coupled receptor (GPCR) that responds to a wide spectrum of agonists, including endogenous trace amines,&nbsp;...}}</ref> – and hence, monoaminergic ]<ref name="Neuropsychopharm" /><ref name="Renaissance GPCR" /> – that are structurally and metabolically related to classical ]s.<ref name="Vascular" /> Compared to the classical monoamines, they are present in trace concentrations.<ref name="Vascular" /> They are distributed heterogeneously throughout the mammalian brain and peripheral nervous tissues and exhibit high rates of ].<ref name="Vascular" /><ref name="Miller" /> Although they can be synthesized within parent monoamine ] systems,<ref name="E Weihe" /> there is evidence that suggests that some of them may comprise their own independent neurotransmitter systems.<ref name="Burchett">{{cite journal | author = Burchett SA, Hicks TP | title = The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain | journal = Prog. Neurobiol. | volume = 79 | issue = 5–6 | pages = 223–46 |date=August 2006 | pmid = 16962229 | doi = 10.1016/j.pneurobio.2006.07.003 | url = }}</ref> '''Trace amines''' are an endogenous group of ]<ref name="pmid22038157">{{cite journal | author = Panas MW, Xie Z, Panas HN, Hoener MC, Vallender EJ, Miller GM | title = Trace amine associated receptor 1 signaling in activated lymphocytes | journal = J Neuroimmune Pharmacol | volume = 7 | issue = 4 | pages = 866–76 |date=December 2012 | pmid = 22038157 | pmc = 3593117 | doi = 10.1007/s11481-011-9321-4 | quote = Trace Amine Associated Receptor 1 (TAAR1) is a G protein coupled receptor (GPCR) that responds to a wide spectrum of agonists, including endogenous trace amines,&nbsp;...}}</ref> – and hence, monoaminergic ]<ref name="Neuropsychopharm" /><ref name="Renaissance GPCR" /> – that are structurally and metabolically related to classical ]s.<ref name="Vascular" /> Compared to the classical monoamines, they are present in trace concentrations.<ref name="Vascular" /> They are distributed heterogeneously throughout the mammalian brain and peripheral nervous tissues and exhibit high rates of ].<ref name="Vascular" /><ref name="Miller" /> Although they can be synthesized within parent monoamine ] systems,<ref name="E Weihe" /> there is evidence that suggests that some of them may comprise their own independent neurotransmitter systems.<ref name="Burchett">{{cite journal | author = Burchett SA, Hicks TP | title = The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain | journal = Prog. Neurobiol. | volume = 79 | issue = 5–6 | pages = 223–46 |date=August 2006 | pmid = 16962229 | doi = 10.1016/j.pneurobio.2006.07.003 | url = }}</ref>


Trace amines play significant roles in regulating the quantity of monoamine neurotransmitters in the ] of monoamine neurons with {{nowrap|co-localized}} {{abbr|TAAR1|trace amine-associated receptor 1}}.<ref name="Miller" /> They have well-characterized presynaptic ''amphetamine-like'' effects on these monoamine neurons via ] activation;<ref name="Neuropsychopharm" /><ref name="Renaissance GPCR" /> specifically, by activating TAAR1 in neurons they promote the release{{#tag:ref|Certain trace amines (e.g., ]) functionally inhibit the cytosolic monoamine transporter ], while others do not (e.g., ]). The trace amines that do not inhibit ] function in monoamine neurons do not release neurotransmitters as effectively as those which do.|group="note"}} and prevent reuptake of monoamine neurotransmitters from the synaptic cleft as well as inhibit postsynaptic ].<ref name="Miller"/><ref name="Miller+Grandy 2016">{{cite journal | vauthors = Grandy DK, Miller GM, Li JX | title = "TAARgeting Addiction"-The Alamo Bears Witness to Another Revolution: An Overview of the Plenary Symposium of the 2015 Behavior, Biology and Chemistry Conference | journal = Drug Alcohol Depend. | volume = 159 | issue = | pages = 9–16 | date = February 2016 | pmid = 26644139 | doi = 10.1016/j.drugalcdep.2015.11.014 | quote = TAAR1 is a high-affinity receptor for METH/AMPH and DA}}</ref> Phenethylamine and amphetamine possess analogous ] in human ]s, as both compounds induce efflux from ] (VMAT2)<ref name="E Weihe">{{cite journal | author = Eiden LE, Weihe E | title = VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse | journal = Ann. N. Y. Acad. Sci. | volume = 1216 | issue = | pages = 86–98 |date=January 2011 | pmid = 21272013 | doi = 10.1111/j.1749-6632.2010.05906.x | quote= neurons in mammalian CNS would be identifiable as neurons expressing VMAT2 for storage, and the biosynthetic enzyme aromatic amino acid decarboxylase (AADC). | pmc=4183197}}</ref><ref name="Offermanns">{{cite book | editor1=Offermanns, S | editor2= Rosenthal, W| title=Encyclopedia of Molecular Pharmacology |year=2008|publisher=Springer|location=Berlin|isbn=3540389164|pages=1219–1222|edition=2nd}}</ref> and activate ] with comparable efficacy.<ref name="Miller" /> Like ], ], and ], the trace amines have been implicated in a vast array of human disorders of affect and cognition, such as ],<ref name="Neuropsychopharm">{{cite journal | author = Berry MD | title = The potential of trace amines and their receptors for treating neurological and psychiatric diseases | journal = Rev Recent Clin Trials | volume = 2 | issue = 1 | pages = 3–19 |date=January 2007 | pmid = 18473983 | doi = 10.2174/157488707779318107| quote = changes in trace amines, in particular PE, have been identified as a possible factor for the onset of attention deficit/hyperactivity disorder (ADHD) . PE has been shown to induce hyperactivity and aggression, two of the cardinal clinical features of ADHD, in experimental animals . Hyperactivity is also a symptom of phenylketonuria, which as discussed above is associated with a markedly elevated PE turnover . Further, amphetamines, which have clinical utility in ADHD, are good ligands at trace amine receptors . Of possible relevance in this aspect is modafanil, which has shown beneficial effects in ADHD patients and has been reported to enhance the activity of PE at TAAR1 . Conversely, methylphenidate, which is also clinically useful in ADHD, showed poor efficacy at the TAAR1 receptor . In this respect it is worth noting that the enhancement of functioning at TAAR1 seen with modafanil was not a result of a direct interaction with TAAR1 .<br />More direct evidence has been obtained recently for a role of trace amines in ADHD. Urinary PE levels have been reported to be decreased in ADHD patients in comparison to both controls and patients with autism . Evidence for a decrease in PE levels in the brain of ADHD patients has also recently been reported . In addition, decreases in the urine and plasma levels of the PE metabolite phenylacetic acid and the precursors phenylalanine and tyrosine have been reported along with decreases in plasma tyramine . Following treatment with methylphenidate, patients who responded positively showed a normalization of urinary PE, whilst non-responders showed no change from baseline values .}}</ref><ref name="Renaissance GPCR" /> ]<ref name="Neuropsychopharm" /><ref name="Renaissance GPCR" /> and ],<ref name="Neuropsychopharm" /><ref name="Renaissance GPCR" /> among others.<ref name="Neuropsychopharm" /><ref name="Renaissance GPCR" /> Trace aminergic hypo-function is particularly relevant to ], since the two most commonly prescribed drugs for ADHD, ] and ], increase phenethylamine biosynthesis in treatment-responsive individuals with ADHD.<ref name="Neuropsychopharm" /><ref name="Review 2009">{{cite journal | author = Sotnikova TD, Caron MG, Gainetdinov RR | title = Trace amine-associated receptors as emerging therapeutic targets | journal = Mol. Pharmacol. | volume = 76 | issue = 2 | pages = 229–35 |date=August 2009 | pmid = 19389919 | pmc = 2713119 | doi = 10.1124/mol.109.055970 | quote = Although the functional role of trace amines in mammals remains largely enigmatic, it has been noted that trace amine levels can be altered in various human disorders, including schizophrenia, Parkinson's disease, attention deficit hyperactivity disorder (ADHD), Tourette syndrome, and phenylketonuria (Boulton, 1980; Sandler et al., 1980). It was generally held that trace amines affect the monoamine system indirectly via interaction with plasma membrane transporters and vesicular storage (Premont et al., 2001; Branchek and Blackburn, 2003; Berry, 2004; Sotnikova et al., 2004).&nbsp;...<br />Furthermore, DAT-deficient mice provide a model to investigate the inhibitory actions of amphetamines on hyperactivity, the feature of amphetamines believed to be important for their therapeutic action in ADHD (Gainetdinov et al., 1999; Gainetdinov and Caron, 2003). It should be noted also that the best-established agonist of TAAR1, β-PEA, shared the ability of amphetamine to induce inhibition of dopamine-dependent hyperactivity of DAT-KO mice (Gainetdinov et al., 1999; Sotnikova et al., 2004).<br />Furthermore, if TAAR1 could be proven as a mediator of some of amphetamine's actions in vivo, the development of novel TAAR1-selective agonists and antagonists could provide a new approach for the treatment of amphetamine-related conditions such as addiction and/or disorders in which amphetamine is used therapeutically. In particular, because amphetamine has remained the most effective pharmacological treatment in ADHD for many years, a potential role of TAAR1 in the mechanism of the “paradoxical” effectiveness of amphetamine in this disorder should be explored.}}</ref> Trace amines play significant roles in regulating the quantity of monoamine neurotransmitters in the ] of monoamine neurons with {{nowrap|co-localized}} {{abbr|TAAR1|trace amine-associated receptor 1}}.<ref name="Miller" /> They have well-characterized presynaptic ''amphetamine-like'' effects on these monoamine neurons via ] activation;<ref name="Neuropsychopharm" /><ref name="Renaissance GPCR" /> specifically, by activating TAAR1 in neurons they promote the release{{#tag:ref|Certain trace amines (e.g., ]) functionally inhibit the cytosolic monoamine transporter ], while others do not (e.g., ]). The trace amines that do not inhibit ] function in monoamine neurons do not release neurotransmitters as effectively as those which do.|group="note"}} and prevent reuptake of monoamine neurotransmitters from the synaptic cleft as well as inhibit postsynaptic ].<ref name="Miller"/><ref name="Miller+Grandy 2016">{{cite journal | vauthors = Grandy DK, Miller GM, Li JX | title = "TAARgeting Addiction"-The Alamo Bears Witness to Another Revolution: An Overview of the Plenary Symposium of the 2015 Behavior, Biology and Chemistry Conference | journal = Drug Alcohol Depend. | volume = 159 | issue = | pages = 9–16 | date = February 2016 | pmid = 26644139 | doi = 10.1016/j.drugalcdep.2015.11.014 | quote = TAAR1 is a high-affinity receptor for METH/AMPH and DA}}</ref> Phenethylamine and amphetamine possess analogous ] in human ]s, as both compounds induce efflux from ] (VMAT2)<ref name="E Weihe">{{cite journal | author = Eiden LE, Weihe E | title = VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse | journal = Ann. N. Y. Acad. Sci. | volume = 1216 | issue = | pages = 86–98 |date=January 2011 | pmid = 21272013 | doi = 10.1111/j.1749-6632.2010.05906.x | quote= neurons in mammalian CNS would be identifiable as neurons expressing VMAT2 for storage, and the biosynthetic enzyme aromatic amino acid decarboxylase (AADC). | pmc=4183197}}</ref><ref name="Offermanns">{{cite book | editor1=Offermanns, S | editor2= Rosenthal, W| title=Encyclopedia of Molecular Pharmacology |year=2008|publisher=Springer|location=Berlin|isbn=3540389164|pages=1219–1222|edition=2nd}}</ref> and activate ] with comparable efficacy.<ref name="Miller" /> Like ], ], and ], the trace amines have been implicated in a vast array of human disorders of affect and cognition, such as ],<ref name="Neuropsychopharm">{{cite journal | author = Berry MD | title = The potential of trace amines and their receptors for treating neurological and psychiatric diseases | journal = Rev Recent Clin Trials | volume = 2 | issue = 1 | pages = 3–19 |date=January 2007 | pmid = 18473983 | doi = 10.2174/157488707779318107| quote = changes in trace amines, in particular PE, have been identified as a possible factor for the onset of attention deficit/hyperactivity disorder (ADHD) . PE has been shown to induce hyperactivity and aggression, two of the cardinal clinical features of ADHD, in experimental animals . Hyperactivity is also a symptom of phenylketonuria, which as discussed above is associated with a markedly elevated PE turnover . Further, amphetamines, which have clinical utility in ADHD, are good ligands at trace amine receptors . Of possible relevance in this aspect is modafanil, which has shown beneficial effects in ADHD patients and has been reported to enhance the activity of PE at TAAR1 . Conversely, methylphenidate, which is also clinically useful in ADHD, showed poor efficacy at the TAAR1 receptor . In this respect it is worth noting that the enhancement of functioning at TAAR1 seen with modafanil was not a result of a direct interaction with TAAR1 .<br />More direct evidence has been obtained recently for a role of trace amines in ADHD. Urinary PE levels have been reported to be decreased in ADHD patients in comparison to both controls and patients with autism . Evidence for a decrease in PE levels in the brain of ADHD patients has also recently been reported . In addition, decreases in the urine and plasma levels of the PE metabolite phenylacetic acid and the precursors phenylalanine and tyrosine have been reported along with decreases in plasma tyramine . Following treatment with methylphenidate, patients who responded positively showed a normalization of urinary PE, whilst non-responders showed no change from baseline values .}}</ref><ref name="Renaissance GPCR" /> ]<ref name="Neuropsychopharm" /><ref name="Renaissance GPCR" /> and ],<ref name="Neuropsychopharm" /><ref name="Renaissance GPCR" /> among others.<ref name="Neuropsychopharm" /><ref name="Renaissance GPCR" /> Trace aminergic hypo-function is particularly relevant to ], since the two most commonly prescribed drugs for ADHD, ] and ], increase phenethylamine biosynthesis in treatment-responsive individuals with ADHD.<ref name="Neuropsychopharm" /><ref name="Review 2009">{{cite journal | author = Sotnikova TD, Caron MG, Gainetdinov RR | title = Trace amine-associated receptors as emerging therapeutic targets | journal = Mol. Pharmacol. | volume = 76 | issue = 2 | pages = 229–35 |date=August 2009 | pmid = 19389919 | pmc = 2713119 | doi = 10.1124/mol.109.055970 | quote = Although the functional role of trace amines in mammals remains largely enigmatic, it has been noted that trace amine levels can be altered in various human disorders, including schizophrenia, Parkinson's disease, attention deficit hyperactivity disorder (ADHD), Tourette syndrome, and phenylketonuria (Boulton, 1980; Sandler et al., 1980). It was generally held that trace amines affect the monoamine system indirectly via interaction with plasma membrane transporters and vesicular storage (Premont et al., 2001; Branchek and Blackburn, 2003; Berry, 2004; Sotnikova et al., 2004).&nbsp;...<br />Furthermore, DAT-deficient mice provide a model to investigate the inhibitory actions of amphetamines on hyperactivity, the feature of amphetamines believed to be important for their therapeutic action in ADHD (Gainetdinov et al., 1999; Gainetdinov and Caron, 2003). It should be noted also that the best-established agonist of TAAR1, β-PEA, shared the ability of amphetamine to induce inhibition of dopamine-dependent hyperactivity of DAT-KO mice (Gainetdinov et al., 1999; Sotnikova et al., 2004).<br />Furthermore, if TAAR1 could be proven as a mediator of some of amphetamine's actions in vivo, the development of novel TAAR1-selective agonists and antagonists could provide a new approach for the treatment of amphetamine-related conditions such as addiction and/or disorders in which amphetamine is used therapeutically. In particular, because amphetamine has remained the most effective pharmacological treatment in ADHD for many years, a potential role of TAAR1 in the mechanism of the “paradoxical” effectiveness of amphetamine in this disorder should be explored.}}</ref>


A thorough review of ]s that discusses the historical evolution of this research particularly well is that of Grandy.<ref name="pmid17888514">{{cite journal | author = Grandy DK | title = Trace amine-associated receptor 1-Family archetype or iconoclast? | journal = Pharmacol. Ther. | volume = 116 | issue = 3 | pages = 355–90 |date=December 2007 | pmid = 17888514 | pmc = 2767338 | doi = 10.1016/j.pharmthera.2007.06.007 | url = }}</ref> A thorough review of ]s that discusses the historical evolution of this research particularly well is that of Grandy.<ref name="pmid17888514">{{cite journal | author = Grandy DK | title = Trace amine-associated receptor 1-Family archetype or iconoclast? | journal = Pharmacol. Ther. | volume = 116 | issue = 3 | pages = 355–90 |date=December 2007 | pmid = 17888514 | pmc = 2767338 | doi = 10.1016/j.pharmthera.2007.06.007 | url = }}</ref>

Revision as of 23:41, 29 January 2016

Trace amine
Drug class
Chemical structure diagramsPhenethylamine skeleton
Class identifiers
Mechanism of actionReceptor agonist
Biological targetTrace amine-associated receptor 1
Chemical classEndogenous amines with trace occurrence
External links
MeSHC434723
Legal status
In Wikidata

Trace amines are an endogenous group of trace amine associated receptor 1 (TAAR1) agonists – and hence, monoaminergic neuromodulators – that are structurally and metabolically related to classical monoamine neurotransmitters. Compared to the classical monoamines, they are present in trace concentrations. They are distributed heterogeneously throughout the mammalian brain and peripheral nervous tissues and exhibit high rates of metabolism. Although they can be synthesized within parent monoamine neurotransmitter systems, there is evidence that suggests that some of them may comprise their own independent neurotransmitter systems.

Trace amines play significant roles in regulating the quantity of monoamine neurotransmitters in the synaptic cleft of monoamine neurons with co-localized TAAR1. They have well-characterized presynaptic amphetamine-like effects on these monoamine neurons via TAAR1 activation; specifically, by activating TAAR1 in neurons they promote the release and prevent reuptake of monoamine neurotransmitters from the synaptic cleft as well as inhibit postsynaptic neuronal firing. Phenethylamine and amphetamine possess analogous pharmacodynamics in human dopamine neurons, as both compounds induce efflux from vesicular monoamine transporter 2 (VMAT2) and activate TAAR1 with comparable efficacy. Like dopamine, noradrenaline, and serotonin, the trace amines have been implicated in a vast array of human disorders of affect and cognition, such as ADHD, depression and schizophrenia, among others. Trace aminergic hypo-function is particularly relevant to ADHD, since the two most commonly prescribed drugs for ADHD, amphetamine and methylphenidate, increase phenethylamine biosynthesis in treatment-responsive individuals with ADHD.

A thorough review of trace amine-associated receptors that discusses the historical evolution of this research particularly well is that of Grandy.

List of trace amines

Human biosynthesis pathway for trace amines and catecholamines Graphic of catecholamine and trace amine biosynthesis L-Phenylalanine L-Tyrosine L-DOPA Epinephrine Phenethylamine p-Tyramine Dopamine Norepinephrine N-Methylphenethylamine N-Methyltyramine p-Octopamine Synephrine 3-Methoxytyramine AADC AADC AADC primary
pathway PNMT PNMT PNMT PNMT AAAH AAAH brain
CYP2D6 minor
pathway COMT DBH DBH The image above contains clickable linksPhenethylaminergic trace amines and the catecholamines are derivatives of phenylalanine.

The human trace amines include:


While not trace amines themselves, the classical monoamines dopamine, norepinephrine, serotonin, and histamine are all partial TAAR1 agonists in humans. N-Methyltryptamine and N,N-dimethyltryptamine are endogenous amines in humans, however their human TAAR1 binding has not yet been documented.

See also

References

  1. Certain trace amines (e.g., phenethylamine) functionally inhibit the cytosolic monoamine transporter VMAT2, while others do not (e.g., octopamine). The trace amines that do not inhibit VMAT2 function in monoamine neurons do not release neurotransmitters as effectively as those which do.

References

  1. Panas MW, Xie Z, Panas HN, Hoener MC, Vallender EJ, Miller GM (December 2012). "Trace amine associated receptor 1 signaling in activated lymphocytes". J Neuroimmune Pharmacol. 7 (4): 866–76. doi:10.1007/s11481-011-9321-4. PMC 3593117. PMID 22038157. Trace Amine Associated Receptor 1 (TAAR1) is a G protein coupled receptor (GPCR) that responds to a wide spectrum of agonists, including endogenous trace amines, ...{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ Berry MD (January 2007). "The potential of trace amines and their receptors for treating neurological and psychiatric diseases". Rev Recent Clin Trials. 2 (1): 3–19. doi:10.2174/157488707779318107. PMID 18473983. changes in trace amines, in particular PE, have been identified as a possible factor for the onset of attention deficit/hyperactivity disorder (ADHD) . PE has been shown to induce hyperactivity and aggression, two of the cardinal clinical features of ADHD, in experimental animals . Hyperactivity is also a symptom of phenylketonuria, which as discussed above is associated with a markedly elevated PE turnover . Further, amphetamines, which have clinical utility in ADHD, are good ligands at trace amine receptors . Of possible relevance in this aspect is modafanil, which has shown beneficial effects in ADHD patients and has been reported to enhance the activity of PE at TAAR1 . Conversely, methylphenidate, which is also clinically useful in ADHD, showed poor efficacy at the TAAR1 receptor . In this respect it is worth noting that the enhancement of functioning at TAAR1 seen with modafanil was not a result of a direct interaction with TAAR1 .
    More direct evidence has been obtained recently for a role of trace amines in ADHD. Urinary PE levels have been reported to be decreased in ADHD patients in comparison to both controls and patients with autism . Evidence for a decrease in PE levels in the brain of ADHD patients has also recently been reported . In addition, decreases in the urine and plasma levels of the PE metabolite phenylacetic acid and the precursors phenylalanine and tyrosine have been reported along with decreases in plasma tyramine . Following treatment with methylphenidate, patients who responded positively showed a normalization of urinary PE, whilst non-responders showed no change from baseline values .
  3. ^ Lindemann L, Hoener MC (May 2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends Pharmacol. Sci. 26 (5): 274–281. doi:10.1016/j.tips.2005.03.007. PMID 15860375. In addition to the main metabolic pathway, TAs can also be converted by nonspecific N-methyltransferase (NMT) and phenylethanolamine N-methyltransferase (PNMT) to the corresponding secondary amines (e.g. synephrine , N-methylphenylethylamine and N-methyltyramine ), which display similar activities on TAAR1 (TA1) as their primary amine precursors...Both dopamine and 3-methoxytyramine, which do not undergo further N-methylation, are partial agonists of TAAR1 (TA1). ...
    The dysregulation of TA levels has been linked to several diseases, which highlights the corresponding members of the TAAR family as potential targets for drug development. In this article, we focus on the relevance of TAs and their receptors to nervous system-related disorders, namely schizophrenia and depression; however, TAs have also been linked to other diseases such as migraine, attention deficit hyperactivity disorder, substance abuse and eating disorders . Clinical studies report increased β-PEA plasma levels in patients suffering from acute schizophrenia and elevated urinary excretion of β-PEA in paranoid schizophrenics , which supports a role of TAs in schizophrenia. As a result of these studies, β-PEA has been referred to as the body's 'endogenous amphetamine'
  4. ^ Broadley KJ (March 2010). "The vascular effects of trace amines and amphetamines". Pharmacol. Ther. 125 (3): 363–375. doi:10.1016/j.pharmthera.2009.11.005. PMID 19948186. Trace amines are metabolized in the mammalian body via monoamine oxidase (MAO; EC 1.4.3.4) (Berry, 2004) (Fig. 2) ... It deaminates primary and secondary amines that are free in the neuronal cytoplasm but not those bound in storage vesicles of the sympathetic neurone ... Similarly, β-PEA would not be deaminated in the gut as it is a selective substrate for MAO-B which is not found in the gut ...
    Brain levels of endogenous trace amines are several hundred-fold below those for the classical neurotransmitters noradrenaline, dopamine and serotonin but their rates of synthesis are equivalent to those of noradrenaline and dopamine and they have a very rapid turnover rate (Berry, 2004). Endogenous extracellular tissue levels of trace amines measured in the brain are in the low nanomolar range. These low concentrations arise because of their very short half-life ...
  5. ^ Miller GM (January 2011). "The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity". J. Neurochem. 116 (2): 164–176. doi:10.1111/j.1471-4159.2010.07109.x. PMC 3005101. PMID 21073468.
  6. ^ Eiden LE, Weihe E (January 2011). "VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse". Ann. N. Y. Acad. Sci. 1216: 86–98. doi:10.1111/j.1749-6632.2010.05906.x. PMC 4183197. PMID 21272013. neurons in mammalian CNS would be identifiable as neurons expressing VMAT2 for storage, and the biosynthetic enzyme aromatic amino acid decarboxylase (AADC).
  7. ^ Burchett SA, Hicks TP (August 2006). "The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain". Prog. Neurobiol. 79 (5–6): 223–46. doi:10.1016/j.pneurobio.2006.07.003. PMID 16962229.
  8. Grandy DK, Miller GM, Li JX (February 2016). ""TAARgeting Addiction"-The Alamo Bears Witness to Another Revolution: An Overview of the Plenary Symposium of the 2015 Behavior, Biology and Chemistry Conference". Drug Alcohol Depend. 159: 9–16. doi:10.1016/j.drugalcdep.2015.11.014. PMID 26644139. TAAR1 is a high-affinity receptor for METH/AMPH and DA
  9. Offermanns, S; Rosenthal, W, eds. (2008). Encyclopedia of Molecular Pharmacology (2nd ed.). Berlin: Springer. pp. 1219–1222. ISBN 3540389164.
  10. Sotnikova TD, Caron MG, Gainetdinov RR (August 2009). "Trace amine-associated receptors as emerging therapeutic targets". Mol. Pharmacol. 76 (2): 229–35. doi:10.1124/mol.109.055970. PMC 2713119. PMID 19389919. Although the functional role of trace amines in mammals remains largely enigmatic, it has been noted that trace amine levels can be altered in various human disorders, including schizophrenia, Parkinson's disease, attention deficit hyperactivity disorder (ADHD), Tourette syndrome, and phenylketonuria (Boulton, 1980; Sandler et al., 1980). It was generally held that trace amines affect the monoamine system indirectly via interaction with plasma membrane transporters and vesicular storage (Premont et al., 2001; Branchek and Blackburn, 2003; Berry, 2004; Sotnikova et al., 2004). ...
    Furthermore, DAT-deficient mice provide a model to investigate the inhibitory actions of amphetamines on hyperactivity, the feature of amphetamines believed to be important for their therapeutic action in ADHD (Gainetdinov et al., 1999; Gainetdinov and Caron, 2003). It should be noted also that the best-established agonist of TAAR1, β-PEA, shared the ability of amphetamine to induce inhibition of dopamine-dependent hyperactivity of DAT-KO mice (Gainetdinov et al., 1999; Sotnikova et al., 2004).
    Furthermore, if TAAR1 could be proven as a mediator of some of amphetamine's actions in vivo, the development of novel TAAR1-selective agonists and antagonists could provide a new approach for the treatment of amphetamine-related conditions such as addiction and/or disorders in which amphetamine is used therapeutically. In particular, because amphetamine has remained the most effective pharmacological treatment in ADHD for many years, a potential role of TAAR1 in the mechanism of the "paradoxical" effectiveness of amphetamine in this disorder should be explored.
    {{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. Grandy DK (December 2007). "Trace amine-associated receptor 1-Family archetype or iconoclast?". Pharmacol. Ther. 116 (3): 355–90. doi:10.1016/j.pharmthera.2007.06.007. PMC 2767338. PMID 17888514.
  12. Wainscott DB, Little SP, Yin T, Tu Y, Rocco VP, He JX, Nelson DL (January 2007). "Pharmacologic characterization of the cloned human trace amine-associated receptor1 (TAAR1) and evidence for species differences with the rat TAAR1". The Journal of Pharmacology and Experimental Therapeutics. 320 (1): 475–85. doi:10.1124/jpet.106.112532. PMID 17038507.{{cite journal}}: CS1 maint: multiple names: authors list (link)
Amphetamine
Main articles
and
pharmaceuticals
Amphetamine
  • Adzenys ER
  • Adzenys XR-ODT
  • Dyanavel XR
  • Evekeo
  • Evekeo ODT
  • Mixed amphetamine salts
LevoamphetamineN/A
Dextroamphetamine
  • Dexedrine
  • ProCentra
  • Zenzedi
Lisdexamfetamine
  • Vyvanse
Neuropharmacology
Biomolecular targets
Inhibited transporters
Active metabolites
Related articles
Trace amine-associated receptor modulators
TAAR1Tooltip Trace amine-associated receptor 1
Agonists
Endogenous
Exogenous
Antagonists
Inverse agonists
TAAR5Tooltip Trace amine-associated receptor 5
Agonists
Inverse agonists
Notes: (1) TAAR1 activity of ligands varies significantly between species. Some agents that are TAAR1 ligands in some species are not in other species. This navbox includes all TAAR1 ligands regardless of species. (2) See the individual pages for references, as well as the List of trace amines, TAAR, and TAAR1 pages. See also: Receptor/signaling modulators
Neurotransmitters
Amino acid-derived
Major excitatory /
inhibitory systems
Glutamate system
GABA system
Glycine system
GHB system
Biogenic amines
Monoamines
Trace amines
Others
Neuropeptides
Lipid-derived
Endocannabinoids
Neurosteroids
Nucleobase-derived
Nucleosides
Adenosine system
Vitamin-derived
Miscellaneous
Cholinergic system
Gasotransmitters
Candidates
Categories:
Trace amine: Difference between revisions Add topic