Misplaced Pages

Hyperoperation: Difference between revisions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 05:07, 6 October 2018 editXayahrainie43 (talk | contribs)Extended confirmed users2,748 edits Notations← Previous edit Revision as of 15:29, 17 October 2018 edit undoXayahrainie43 (talk | contribs)Extended confirmed users2,748 edits Special cases: add tables, there are also tables in the Knuth's up-arrow notation and Ackermann function articlesNext edit →
Line 129: Line 129:
| ''a'', ''b'' integers ≥ −1<ref group="nb" name="nega"/> | ''a'', ''b'' integers ≥ −1<ref group="nb" name="nega"/>
|} |}

== Table of values==

===Computing 0 ''n''===
Clearly, for ''m'' = 1, we have that 0 ''n'' = 0 + ''n'' = ''n'', and for ''m'' = 2 or 3 , 0 ''n'' are all zero except of 0 0 = ], which is 1 and sometimes undefined. If ''m'' ≥ 4, we have that 0 0 = 1, 0 1 = 0 (0 0) = 0 1 = 0, 0 2 = 0 (0 1) = 0 0 = 1, 0 3 = 0 (0 2) = 0 1 = 0, etc., so we have that when ''n'' is ], then 0 ''n'' = 1, and when ''n'' is ], then 0 ''n'' = 0.

{| class="wikitable"
|+ Values of <math>0 n</math>
|-
! ''m''\''n''
! 0
! 1
! 2
! 3
! 4
! 5
! 6
! formula
|-
! 0
| 1 || 2 || 3 || 4 || 5 || 6 || 7 || <math>n+1</math>
|-
! 1
| 0 || 1 || 2 || 3 || 4 || 5 || 6 || <math>0+n</math>
|-
! 2
| 0 || 0 || 0 || 0 || 0 || 0 || 0 || <math>0 \cdot n</math>
|-
! 3
| 1 || 0 || 0 || 0 || 0 || 0 || 0 || <math>0^n</math>
|-
! 4
| 1 || 0 || 1 || 0 || 1 || 0 || 1 || <math>0 n</math>
|-
! 5
| 1 || 0 || 1 || 0 || 1 || 0 || 1 || <math>0 n</math>
|-
! 6
| 1 || 0 || 1 || 0 || 1 || 0 || 1 || <math>0 n</math>
|}

===Computing 1 ''n''===

<math>1n</math> are all 1 for all ''m'' ≥ 3, because all of them can be written as 1<sup>''k''</sup> for some natural number ''k''. (1 ''n'' = 1 (1 (''n'' - 1)) = 1 (1 (1 (''n'' - 1) - 1) = ... = 1 (some natural number) = 1 (some natural number) = 1<sup>some natural number</sup> = 1)

{| class="wikitable"
|+ Values of <math>1 n</math>
|-
! ''m''\''n''
! 0
! 1
! 2
! 3
! 4
! 5
! 6
! formula
|-
! 0
| 1 || 2 || 3 || 4 || 5 || 6 || 7 || <math>n+1</math>
|-
! 1
| 1 || 2 || 3 || 4 || 5 || 6 || 7 || <math>1+n</math>
|-
! 2
| 0 || 1 || 2 || 3 || 4 || 5 || 6 || <math>1 \cdot n</math>
|-
! 3
| 1 || 1 || 1 || 1 || 1 || 1 || 1 || <math>1^n</math>
|-
! 4
| 1 || 1 || 1 || 1 || 1 || 1 || 1 || <math>1 n</math>
|-
! 5
| 1 || 1 || 1 || 1 || 1 || 1 || 1 || <math>1 n</math>
|-
! 6
| 1 || 1 || 1 || 1 || 1 || 1 || 1 || <math>1 n</math>
|}

===Computing 2 ''n''===

Computing <math>2 n</math> can be restated in terms of an infinite table. We place the numbers ''n'' + 1 in the zeroth row, and fill the zeroth column with values 2 for ''m'' = 1, 0 for ''m'' = 2 and 1 for all ''m'' ≥ 3. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.

{| class="wikitable"
|+ Values of <math>2 n</math>
|-
! ''m''\''n''
! 0
! 1
! 2
! 3
! 4
! 5
! 6
! formula
|-
! 0
| 1 || 2 || 3 || 4 || 5 || 6 || 7 || <math>n+1</math>
|-
! 1
| 2 || 3 || 4 || 5 || 6 || 7 || 8 || <math>2+n</math>
|-
! 2
| 0 || 2 || 4 || 6 || 8 || 10 || 12 || <math>2 \cdot n</math>
|-
! 3
| 1 || 2 || 4 || 8 || 16 || 32 || 64 || <math>2^n</math>
|-
! 4
| 1 || 2 || 4 || 16 || 65536 || <math>2^{65\,536}\approx 2.0 \times 10^{19\,728}</math> || <math>2^{2^{65\,536}}\approx 10^{6.0 \times 10^{19\,727}}</math> || <math>2 n</math>
|-
! 5
| 1 || 2 || 4 || 65536 || <math>
\begin{matrix}
\underbrace{2_{}^{2^{{}^{.\,^{.\,^{.\,^2}}}}}} \\
65536\mbox{ copies of }2 \end{matrix}
</math> || &nbsp; || &nbsp; || <math>2 n</math>
|-
! 6
| 1 || 2 || 4 || <math>
\begin{matrix}
\underbrace{2_{}^{2^{{}^{.\,^{.\,^{.\,^2}}}}}}\\
65536\mbox{ copies of }2
\end{matrix}</math> || &nbsp; || &nbsp; || &nbsp;
| <math>2 n</math>
|}

This table is the same as ] with base 2 (in fact, table of hyperoperation with any base is the same is table of Knuth's up-arrow notation with same base), except for that it does not have the first 3 rows (0th, 1st, and 2nd rows) of this table (that is, the ''n''th row of it (notice that it starts with "1st" row) is related to the (''n'' + 2)th row of this table). Besides, this table is also the same as ], except for that it does not have the first 3 columns (0th, 1st, and 2nd columns) of this table (that is, the ''n''th column of it is related to the (''n'' + 3)th column of this table), and that it has an addition of 3 to all values.

===Computing 3 ''n''===

We place the numbers ''n'' + 1 in the zeroth row, and fill the zeroth column with values 3 for ''m'' = 1, 0 for ''m'' = 2 and 1 for all ''m'' ≥ 3. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.

{| class="wikitable"
|+ Values of <math>3 n</math>
|-
! ''m''\''n''
! 0
! 1
! 2
! 3
! 4
! 5
! 6
! formula
|-
! 0
| 1 || 2 || 3 || 4 || 5 || 6 || 7 || <math>n+1</math>
|-
! 1
| 3 || 4 || 5 || 6 || 7 || 8 || 9 || <math>3+n</math>
|-
! 2
| 0 || 3 || 6 || 9 || 12 || 15 || 18 || <math>3 \cdot n</math>
|-
! 3
| 1 || 3 || 9 || 27 || 81 || 243 || 729 || <math>3^n</math>
|-
! 4
| 1 || 3 || 27 || 7,625,597,484,987 || <math>3^{7{,}625{,}597{,}484{,}987}</math> || <math>3^{3^{7{,}625{,}597{,}484{,}987}}</math> || <math>3^{3^{3^{7{,}625{,}597{,}484{,}987}}}</math> || <math>3 n</math>
|-
! 5
| 1 || 3 || 7,625,597,484,987 || <math>
\begin{matrix}
\underbrace{3_{}^{3^{{}^{.\,^{.\,^{.\,^3}}}}}}\\
7{,}625{,}597{,}484{,}987\mbox{ copies of }3
\end{matrix}</math> || &nbsp; || &nbsp; || &nbsp; || <math>3 n</math>
|-
! 6
| 1 || 3 || <math>\begin{matrix}
\underbrace{3_{}^{3^{{}^{.\,^{.\,^{.\,^3}}}}}}\\
7{,}625{,}597{,}484{,}987\mbox{ copies of }3
\end{matrix}</math> || &nbsp; || &nbsp; || &nbsp; || &nbsp; || <math>3 n</math>
|}

===Computing 10 ''n''===

We place the numbers ''n'' + 1 in the zeroth row, and fill the zeroth column with values 10 for ''m'' = 1, 0 for ''m'' = 2 and 1 for all ''m'' ≥ 3. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.

{| class="wikitable"
|+ Values of <math>10 n</math>
|-
! ''m''\''n''
! 0
! 1
! 2
! 3
! 4
! 5
! 6
! formula
|-
! 0
| 1 || 2 || 3 || 4 || 5 || 6 || 7 || <math>n+1</math>
|-
! 1
| 10 || 11 || 12 || 13 || 14 || 15 || 16 || <math>10+n</math>
|-
! 2
| 0 || 10 || 20 || 30 || 40 || 50 || 60 || <math>10 \cdot n</math>
|-
! 3
| 1 || 10 || 100 || 1,000 || 10,000 || 100,000 || 1,000,000 || <math>10^n</math>
|-
! 4
| 1 || 10 || 10,000,000,000 || <math>10^{10,000,000,000}</math> || <math>10^{10^{10,000,000,000}}</math> || <math>10^{10^{10^{10,000,000,000}}}</math> || <math>10^{10^{10^{10^{10,000,000,000}}}}</math> || <math>10 n</math>
|-
! 5
| 1 || 10 || <math>
\begin{matrix}
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
10\mbox{ copies of }10
\end{matrix}</math> || <math>
\begin{matrix}
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
10\mbox{ copies of }10
\end{matrix}</math> || <math>
\begin{matrix}
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
10\mbox{ copies of }10
\end{matrix}</math> || <math>
\begin{matrix}
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
10\mbox{ copies of }10
\end{matrix}</math> || <math>
\begin{matrix}
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
\underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\
10\mbox{ copies of }10
\end{matrix}</math> || <math>10 n</math>
|-
! 6
| 1 || 10 || <math>
\begin{matrix}
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
10\mbox{ copies of }10
\end{matrix}</math> || <math>
\begin{matrix}
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
10\mbox{ copies of }10
\end{matrix}</math> || <math>
\begin{matrix}
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
10\mbox{ copies of }10
\end{matrix}</math> || <math>
\begin{matrix}
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
10\mbox{ copies of }10
\end{matrix}</math> || <math>
\begin{matrix}
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
\underbrace{^{^{^{^{^{10}.}.}.}10}10}\\
10\mbox{ copies of }10
\end{matrix}</math> || <math>10 n</math>
|}

(<sup>''b''</sup>''a'' in the sixth row means ''a'' ''b'')

Note that for 2 ≤ ''n'' ≤ 9 the numerical order of the numbers 10 ''n'' is the ] with ''m'' as the most significant number, so for the numbers of these 8 columns the numerical order is simply line-by-line. The same applies for the numbers in the 97 columns with 3 ≤ ''n'' ≤ 99, and if we start from ''m'' = 0 even for 3 ≤ ''n'' ≤ 9,999,999,999.


==Special cases== ==Special cases==


''H<sub>n</sub>''(0, ''b'') = 0 ''b'' =
:0, when ''n'' = 2, or ''n'' = 3, ''b'' ≥ 1, or ''n'' ≥ 4, ''b'' odd (≥ −1) :0, when ''n'' = 2, or ''n'' = 3, ''b'' ≥ 1, or ''n'' ≥ 4, ''b'' odd (≥ -1)
:1, when ''n'' = 3, ''b'' = 0, or ''n'' ≥ 4, ''b'' even (≥ 0) :1, when ''n'' = 3, ''b'' = 0, or ''n'' ≥ 4, ''b'' even (≥ 0)
:''b'', when ''n'' = 1 :''b'', when ''n'' = 1
:''b'' + 1, when ''n'' = 0 :''b'' + 1, when ''n'' = 0


''H<sub>n</sub>''(1, ''b'') = ''a'' 0 =
:1, when ''n'' ≥ 3

''H<sub>n</sub>''(''a'', 0) =
:0, when ''n'' = 2 :0, when ''n'' = 2
:1, when ''n'' = 0, or ''n'' ≥ 3 :1, when ''n'' = 0, or ''n'' ≥ 3
:''a'', when ''n'' = 1 :''a'', when ''n'' = 1


''H<sub>n</sub>''(''a'', 1) = ''a'' (-1) =<ref group="nb" name="nega"/>
:a, when ''n'' ≥ 2

''H<sub>n</sub>''(''a'', −1) =<ref group="nb" name="nega"/>
:0, when ''n'' = 0, or ''n'' ≥ 4 :0, when ''n'' = 0, or ''n'' ≥ 4
:''a'' 1, when ''n'' = 1 :''a'' - 1, when ''n'' = 1
:''a'', when ''n'' = 2 :-''a'', when ''n'' = 2
:{{sfrac|''a''}} , when ''n'' = 3 :<math>\frac{1}{a}</math>, when ''n'' = 3

''H<sub>n</sub>''(2, 2) =
: 3, when ''n'' = 0
: 4, when ''n'' ≥ 1, easily demonstrable recursively.


== History == == History ==

Revision as of 15:29, 17 October 2018

This article is about the arithmetic concept. For the group theory hyperoperation concept, see Hyperstructure.

In mathematics, the hyperoperation sequence is an infinite sequence of arithmetic operations (called hyperoperations) that starts with the unary operation of successor (n = 0), then continues with the binary operations of addition (n = 1), multiplication (n = 2), and exponentiation (n = 3), after which the sequence proceeds with further binary operations extending beyond exponentiation, using right-associativity. For the operations beyond exponentiation, the nth member of this sequence is named by Reuben Goodstein after the Greek prefix of n suffixed with -ation (such as tetration (n = 4), pentation (n = 5), hexation (n = 6), etc.) and can be written as using n − 2 arrows in Knuth's up-arrow notation. Each hyperoperation may be understood recursively in terms of the previous one by:

a [ n ] b = a [ n 1 ] ( a [ n 1 ] ( a [ n 1 ] ( [ n 1 ] ( a [ n 1 ] ( a [ n 1 ] a ) ) ) ) ) b  copies of  a , n 2 {\displaystyle ab=\underbrace {a(a(a(\cdots (a(aa))\cdots )))} _{\displaystyle b{\mbox{ copies of }}a},\quad n\geq 2}

It may also be defined according to the recursion rule part of the definition, as in Knuth's up-arrow version of the Ackermann function:

a [ n ] b = a [ n 1 ] ( a [ n ] ( b 1 ) ) , n 1 {\displaystyle ab=a\left(a\left(b-1\right)\right),\quad n\geq 1}

This can be used to easily show numbers much larger than those which scientific notation can, such as Skewes' number and googolplexplex (e.g. 50 [ 50 ] 50 {\displaystyle 5050} is much larger than Skewes’ number and googolplexplex), but there are some numbers which even they cannot easily show, such as Graham's number and TREE(3).

This recursion rule is common to many variants of hyperoperations (see below in definition).

Definition

The hyperoperation sequence H n ( a , b ) : ( N 0 ) 3 N 0 {\displaystyle H_{n}(a,b)\,:\,(\mathbb {N} _{0})^{3}\rightarrow \mathbb {N} _{0}} is the sequence of binary operations H n : ( N 0 ) 2 N 0 {\displaystyle H_{n}\,:\,(\mathbb {N} _{0})^{2}\rightarrow \mathbb {N} _{0}} , defined recursively as follows:

H n ( a , b ) = a [ n ] b = { b + 1 if  n = 0 a if  n = 1  and  b = 0 0 if  n = 2  and  b = 0 1 if  n 3  and  b = 0 H n 1 ( a , H n ( a , b 1 ) ) otherwise {\displaystyle H_{n}(a,b)=ab={\begin{cases}b+1&{\text{if }}n=0\\a&{\text{if }}n=1{\text{ and }}b=0\\0&{\text{if }}n=2{\text{ and }}b=0\\1&{\text{if }}n\geq 3{\text{ and }}b=0\\H_{n-1}(a,H_{n}(a,b-1))&{\text{otherwise}}\end{cases}}}

(Note that for n = 0, the binary operation essentially reduces to a unary operation (successor function) by ignoring the first argument.)

For n = 0, 1, 2, 3, this definition reproduces the basic arithmetic operations of successor (which is a unary operation), addition, multiplication, and exponentiation, respectively, as

H 0 ( a , b ) = b + 1 , H 1 ( a , b ) = a + b , H 2 ( a , b ) = a b , H 3 ( a , b ) = a b , {\displaystyle {\begin{aligned}H_{0}(a,b)&=b+1\,\!,\\H_{1}(a,b)&=a+b\,\!,\\H_{2}(a,b)&=a\cdot b\,\!,\\H_{3}(a,b)&=a^{b}\,\!,\end{aligned}}}

So what will be the next operation after exponentiation? We defined multiplication so that H 2 ( a , 3 ) = a [ 2 ] 3 = a × 3 = a + a + a , {\displaystyle H_{2}(a,3)=a3=a\times 3=a+a+a,} , and defined exponentiation so that H 3 ( a , 3 ) = a [ 3 ] 3 = a 3 = a a a , {\displaystyle H_{3}(a,3)=a3=a^{3}=a\cdot a\cdot a,} so it seems logical to define the next operation, tetration, so that H 4 ( a , 3 ) = a [ 4 ] 3 = tetration ( a , 3 ) = a a a , {\displaystyle H_{4}(a,3)=a3=\operatorname {tetration} (a,3)=a^{a^{a}},} with a tower of three 'a'. Analogously, the pentation of (a, 3) will be tetration(a, tetration(a, a)), with three "a" in it.

The H operations for n ≥ 3 can be written in Knuth's up-arrow notation as

H 4 ( a , b ) = a ↑ ↑ b , H 5 ( a , b ) = a ↑ ↑ ↑ b , H n ( a , b ) = a n 2 b  for  n 3 , {\displaystyle {\begin{aligned}H_{4}(a,b)&=a\uparrow \uparrow {b}\,\!,\\H_{5}(a,b)&=a\uparrow \uparrow \uparrow {b}\,\!,\\\ldots &\\H_{n}(a,b)&=a\uparrow ^{n-2}b{\text{ for }}n\geq 3\,\!,\\\ldots &\\\end{aligned}}}

Knuth's notation could be extended to negative indices ≥ −2 in such a way as to agree with the entire hyperoperation sequence, except for the lag in the indexing:

H n ( a , b ) = a n 2 b  for  n 0. {\displaystyle H_{n}(a,b)=a\uparrow ^{n-2}b{\text{ for }}n\geq 0.}

The hyperoperations can thus be seen as an answer to the question "what's next" in the sequence: successor, addition, multiplication, exponentiation, and so on. Noting that

a + b = ( a + ( b 1 ) ) + 1 a b = a + ( a ( b 1 ) ) a b = a ( a ( b 1 ) ) a [ 4 ] b = a a [ 4 ] ( b 1 ) {\displaystyle {\begin{aligned}a+b&=(a+(b-1))+1\\a\cdot b&=a+(a\cdot (b-1))\\a^{b}&=a\cdot \left(a^{(b-1)}\right)\\ab&=a^{a(b-1)}\end{aligned}}}

the relationship between basic arithmetic operations is illustrated, allowing the higher operations to be defined naturally as above. The parameters of the hyperoperation hierarchy are sometimes referred to by their analogous exponentiation term; so a is the base, b is the exponent (or hyperexponent), and n is the rank (or grade)., and H n ( a , b ) {\displaystyle H_{n}(a,b)} is read as "the bth n-ation of a", e.g. H 4 ( 7 , 9 ) {\displaystyle H_{4}(7,9)} is read as "the 9th tetration of 7", and H 123 ( 456 , 789 ) {\displaystyle H_{123}(456,789)} is read as "the 789th 123-ation of 456".

In common terms, the hyperoperations are ways of compounding numbers that increase in growth based on the iteration of the previous hyperoperation. The concepts of successor, addition, multiplication and exponentiation are all hyperoperations; the successor operation (producing x + 1 from x) is the most primitive, the addition operator specifies the number of times 1 is to be added to itself to produce a final value, multiplication specifies the number of times a number is to be added to itself, and exponentiation refers to the number of times a number is to be multiplied by itself.

Examples

Below is a list of the first seven (0th to 6th) hyperoperations (0⁰ is defined as 1.).

n Operation,
Hn(a, b)
Definition Names Domain
0 1 + b {\displaystyle 1+b} or a [ 0 ] b {\displaystyle ab} 1 + 1 + 1 + 1 + + 1 + 1 + 1 b  copies of 1 {\displaystyle 1+\underbrace {1+1+1+\cdots +1+1+1} _{\displaystyle b{\mbox{ copies of 1}}}} hyper0, increment, successor, zeration Arbitrary
1 a + b {\displaystyle a+b} or a [ 1 ] b {\displaystyle ab} a + 1 + 1 + 1 + + 1 + 1 + 1 b  copies of 1 {\displaystyle a+\underbrace {1+1+1+\cdots +1+1+1} _{\displaystyle b{\mbox{ copies of 1}}}} hyper1, addition Arbitrary
2 a b {\displaystyle a\cdot b} or a [ 2 ] b {\displaystyle ab} a + a + a + + a + a + a b  copies of  a {\displaystyle \underbrace {a+a+a+\cdots +a+a+a} _{\displaystyle b{\mbox{ copies of }}a}} hyper2, multiplication Arbitrary
3 a b {\displaystyle a^{b}} or a [ 3 ] b {\displaystyle ab} a a a a a a b  copies of  a {\displaystyle \underbrace {a\cdot a\cdot a\cdot \;\cdots \;\cdot a\cdot a\cdot a} _{\displaystyle b{\mbox{ copies of }}a}} hyper3, exponentiation b real, with some multivalued extensions to complex numbers
4 b a {\displaystyle ^{b}a} or a [ 4 ] b {\displaystyle ab} a [ 3 ] ( a [ 3 ] ( a [ 3 ] ( [ 3 ] ( a [ 3 ] ( a [ 3 ] a ) ) ) ) ) b  copies of  a {\displaystyle \underbrace {a(a(a(\cdots (a(aa))\cdots )))} _{\displaystyle b{\mbox{ copies of }}a}} hyper4, tetration a ≥ 0 or an integer, b an integer ≥ −1 (with some proposed extensions)
5 a [ 5 ] b {\displaystyle ab} a [ 4 ] ( a [ 4 ] ( a [ 4 ] ( [ 4 ] ( a [ 4 ] ( a [ 4 ] a ) ) ) ) ) b  copies of  a {\displaystyle \underbrace {a(a(a(\cdots (a(aa))\cdots )))} _{\displaystyle b{\mbox{ copies of }}a}} hyper5, pentation a, b integers ≥ −1
6 a [ 6 ] b {\displaystyle ab} a [ 5 ] ( a [ 5 ] ( a [ 5 ] ( [ 5 ] ( a [ 5 ] ( a [ 5 ] a ) ) ) ) ) b  copies of  a {\displaystyle \underbrace {a(a(a(\cdots (a(aa))\cdots )))} _{\displaystyle b{\mbox{ copies of }}a}} hyper6, hexation a, b integers ≥ −1

Table of values

Computing 0 n

Clearly, for m = 1, we have that 0 n = 0 + n = n, and for m = 2 or 3 , 0 n are all zero except of 0 0 = 0, which is 1 and sometimes undefined. If m ≥ 4, we have that 0 0 = 1, 0 1 = 0 (0 0) = 0 1 = 0, 0 2 = 0 (0 1) = 0 0 = 1, 0 3 = 0 (0 2) = 0 1 = 0, etc., so we have that when n is even, then 0 n = 1, and when n is odd, then 0 n = 0.

Values of 0 [ m ] n {\displaystyle 0n}
m\n 0 1 2 3 4 5 6 formula
0 1 2 3 4 5 6 7 n + 1 {\displaystyle n+1}
1 0 1 2 3 4 5 6 0 + n {\displaystyle 0+n}
2 0 0 0 0 0 0 0 0 n {\displaystyle 0\cdot n}
3 1 0 0 0 0 0 0 0 n {\displaystyle 0^{n}}
4 1 0 1 0 1 0 1 0 [ 4 ] n {\displaystyle 0n}
5 1 0 1 0 1 0 1 0 [ 5 ] n {\displaystyle 0n}
6 1 0 1 0 1 0 1 0 [ 6 ] n {\displaystyle 0n}

Computing 1 n

1 [ m ] n {\displaystyle 1n} are all 1 for all m ≥ 3, because all of them can be written as 1 for some natural number k. (1 n = 1 (1 (n - 1)) = 1 (1 (1 (n - 1) - 1) = ... = 1 (some natural number) = 1 (some natural number) = 1 = 1)

Values of 1 [ m ] n {\displaystyle 1n}
m\n 0 1 2 3 4 5 6 formula
0 1 2 3 4 5 6 7 n + 1 {\displaystyle n+1}
1 1 2 3 4 5 6 7 1 + n {\displaystyle 1+n}
2 0 1 2 3 4 5 6 1 n {\displaystyle 1\cdot n}
3 1 1 1 1 1 1 1 1 n {\displaystyle 1^{n}}
4 1 1 1 1 1 1 1 1 [ 4 ] n {\displaystyle 1n}
5 1 1 1 1 1 1 1 1 [ 5 ] n {\displaystyle 1n}
6 1 1 1 1 1 1 1 1 [ 6 ] n {\displaystyle 1n}

Computing 2 n

Computing 2 [ m ] n {\displaystyle 2n} can be restated in terms of an infinite table. We place the numbers n + 1 in the zeroth row, and fill the zeroth column with values 2 for m = 1, 0 for m = 2 and 1 for all m ≥ 3. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.

Values of 2 [ m ] n {\displaystyle 2n}
m\n 0 1 2 3 4 5 6 formula
0 1 2 3 4 5 6 7 n + 1 {\displaystyle n+1}
1 2 3 4 5 6 7 8 2 + n {\displaystyle 2+n}
2 0 2 4 6 8 10 12 2 n {\displaystyle 2\cdot n}
3 1 2 4 8 16 32 64 2 n {\displaystyle 2^{n}}
4 1 2 4 16 65536 2 65 536 2.0 × 10 19 728 {\displaystyle 2^{65\,536}\approx 2.0\times 10^{19\,728}} 2 2 65 536 10 6.0 × 10 19 727 {\displaystyle 2^{2^{65\,536}}\approx 10^{6.0\times 10^{19\,727}}} 2 [ 4 ] n {\displaystyle 2n}
5 1 2 4 65536 2 2 . . . 2 65536  copies of  2 {\displaystyle {\begin{matrix}\underbrace {2_{}^{2^{{}^{.\,^{.\,^{.\,^{2}}}}}}} \\65536{\mbox{ copies of }}2\end{matrix}}}     2 [ 5 ] n {\displaystyle 2n}
6 1 2 4 2 2 . . . 2 65536  copies of  2 {\displaystyle {\begin{matrix}\underbrace {2_{}^{2^{{}^{.\,^{.\,^{.\,^{2}}}}}}} \\65536{\mbox{ copies of }}2\end{matrix}}}       2 [ 6 ] n {\displaystyle 2n}

This table is the same as that of Knuth's up-arrow notation with base 2 (in fact, table of hyperoperation with any base is the same is table of Knuth's up-arrow notation with same base), except for that it does not have the first 3 rows (0th, 1st, and 2nd rows) of this table (that is, the nth row of it (notice that it starts with "1st" row) is related to the (n + 2)th row of this table). Besides, this table is also the same as that of the Ackermann function, except for that it does not have the first 3 columns (0th, 1st, and 2nd columns) of this table (that is, the nth column of it is related to the (n + 3)th column of this table), and that it has an addition of 3 to all values.

Computing 3 n

We place the numbers n + 1 in the zeroth row, and fill the zeroth column with values 3 for m = 1, 0 for m = 2 and 1 for all m ≥ 3. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.

Values of 3 [ m ] n {\displaystyle 3n}
m\n 0 1 2 3 4 5 6 formula
0 1 2 3 4 5 6 7 n + 1 {\displaystyle n+1}
1 3 4 5 6 7 8 9 3 + n {\displaystyle 3+n}
2 0 3 6 9 12 15 18 3 n {\displaystyle 3\cdot n}
3 1 3 9 27 81 243 729 3 n {\displaystyle 3^{n}}
4 1 3 27 7,625,597,484,987 3 7,625,597,484,987 {\displaystyle 3^{7{,}625{,}597{,}484{,}987}} 3 3 7,625,597,484,987 {\displaystyle 3^{3^{7{,}625{,}597{,}484{,}987}}} 3 3 3 7,625,597,484,987 {\displaystyle 3^{3^{3^{7{,}625{,}597{,}484{,}987}}}} 3 [ 4 ] n {\displaystyle 3n}
5 1 3 7,625,597,484,987 3 3 . . . 3 7,625,597,484,987  copies of  3 {\displaystyle {\begin{matrix}\underbrace {3_{}^{3^{{}^{.\,^{.\,^{.\,^{3}}}}}}} \\7{,}625{,}597{,}484{,}987{\mbox{ copies of }}3\end{matrix}}}       3 [ 5 ] n {\displaystyle 3n}
6 1 3 3 3 . . . 3 7,625,597,484,987  copies of  3 {\displaystyle {\begin{matrix}\underbrace {3_{}^{3^{{}^{.\,^{.\,^{.\,^{3}}}}}}} \\7{,}625{,}597{,}484{,}987{\mbox{ copies of }}3\end{matrix}}}         3 [ 6 ] n {\displaystyle 3n}

Computing 10 n

We place the numbers n + 1 in the zeroth row, and fill the zeroth column with values 10 for m = 1, 0 for m = 2 and 1 for all m ≥ 3. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken.

Values of 10 [ m ] n {\displaystyle 10n}
m\n 0 1 2 3 4 5 6 formula
0 1 2 3 4 5 6 7 n + 1 {\displaystyle n+1}
1 10 11 12 13 14 15 16 10 + n {\displaystyle 10+n}
2 0 10 20 30 40 50 60 10 n {\displaystyle 10\cdot n}
3 1 10 100 1,000 10,000 100,000 1,000,000 10 n {\displaystyle 10^{n}}
4 1 10 10,000,000,000 10 10 , 000 , 000 , 000 {\displaystyle 10^{10,000,000,000}} 10 10 10 , 000 , 000 , 000 {\displaystyle 10^{10^{10,000,000,000}}} 10 10 10 10 , 000 , 000 , 000 {\displaystyle 10^{10^{10^{10,000,000,000}}}} 10 10 10 10 10 , 000 , 000 , 000 {\displaystyle 10^{10^{10^{10^{10,000,000,000}}}}} 10 [ 4 ] n {\displaystyle 10n}
5 1 10 10 10 . . . 10 10  copies of  10 {\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}} 10 10 . . . 10 10 10 . . . 10 10  copies of  10 {\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}} 10 10 . . . 10 10 10 . . . 10 10 10 . . . 10 10  copies of  10 {\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}} 10 10 . . . 10 10 10 . . . 10 10 10 . . . 10 10 10 . . . 10 10  copies of  10 {\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}} 10 10 . . . 10 10 10 . . . 10 10 10 . . . 10 10 10 . . . 10 10 10 . . . 10 10  copies of  10 {\displaystyle {\begin{matrix}\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\\underbrace {10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}} \\10{\mbox{ copies of }}10\end{matrix}}} 10 [ 5 ] n {\displaystyle 10n}
6 1 10 10 . . . 10 10 10  copies of  10 {\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}} 10 . . . 10 10 10 . . . 10 10 10  copies of  10 {\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}} 10 . . . 10 10 10 . . . 10 10 10 . . . 10 10 10  copies of  10 {\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}} 10 . . . 10 10 10 . . . 10 10 10 . . . 10 10 10 . . . 10 10 10  copies of  10 {\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}} 10 . . . 10 10 10 . . . 10 10 10 . . . 10 10 10 . . . 10 10 10 . . . 10 10 10  copies of  10 {\displaystyle {\begin{matrix}\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\\underbrace {^{^{^{^{^{10}.}.}.}10}10} \\10{\mbox{ copies of }}10\end{matrix}}} 10 [ 6 ] n {\displaystyle 10n}

(a in the sixth row means a b)

Note that for 2 ≤ n ≤ 9 the numerical order of the numbers 10 n is the lexicographical order with m as the most significant number, so for the numbers of these 8 columns the numerical order is simply line-by-line. The same applies for the numbers in the 97 columns with 3 ≤ n ≤ 99, and if we start from m = 0 even for 3 ≤ n ≤ 9,999,999,999.

Special cases

0 b =

0, when n = 2, or n = 3, b ≥ 1, or n ≥ 4, b odd (≥ -1)
1, when n = 3, b = 0, or n ≥ 4, b even (≥ 0)
b, when n = 1
b + 1, when n = 0

a 0 =

0, when n = 2
1, when n = 0, or n ≥ 3
a, when n = 1

a (-1) =

0, when n = 0, or n ≥ 4
a - 1, when n = 1
-a, when n = 2
1 a {\displaystyle {\frac {1}{a}}} , when n = 3

History

One of the earliest discussions of hyperoperations was that of Albert Bennett in 1914, who developed some of the theory of commutative hyperoperations (see below). About 12 years later, Wilhelm Ackermann defined the function ϕ ( a , b , n ) {\displaystyle \phi (a,b,n)} which somewhat resembles the hyperoperation sequence.

In his 1947 paper, R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations, and also suggested the Greek names tetration, pentation, etc., for the extended operations beyond exponentiation (because they correspond to the indices 4, 5, etc.). As a three-argument function, e.g., G ( n , a , b ) = H n ( a , b ) {\displaystyle G(n,a,b)=H_{n}(a,b)} , the hyperoperation sequence as a whole is seen to be a version of the original Ackermann function ϕ ( a , b , n ) {\displaystyle \phi (a,b,n)} recursive but not primitive recursive — as modified by Goodstein to incorporate the primitive successor function together with the other three basic operations of arithmetic (addition, multiplication, exponentiation), and to make a more seamless extension of these beyond exponentiation.

The original three-argument Ackermann function ϕ {\displaystyle \phi } uses the same recursion rule as does Goodstein's version of it (i.e., the hyperoperation sequence), but differs from it in two ways. First, ϕ ( a , b , n ) {\displaystyle \phi (a,b,n)} defines a sequence of operations starting from addition (n = 0) rather than the successor function, then multiplication (n = 1), exponentiation (n = 2), etc. Secondly, the initial conditions for ϕ {\displaystyle \phi } result in ϕ ( a , b , 3 ) = G ( 4 , a , b + 1 ) = a [ 4 ] ( b + 1 ) {\displaystyle \phi (a,b,3)=G(4,a,b+1)=a(b+1)} , thus differing from the hyperoperations beyond exponentiation. The significance of the b + 1 in the previous expression is that ϕ ( a , b , 3 ) {\displaystyle \phi (a,b,3)} = a a a {\displaystyle a^{a^{\cdot ^{\cdot ^{\cdot ^{a}}}}}} , where b counts the number of operators (exponentiations), rather than counting the number of operands ("a"s) as does the b in a [ 4 ] b {\displaystyle ab} , and so on for the higher-level operations. (See the Ackermann function article for details.)

Notations

This is a list of notations that have been used for hyperoperations.

Name Notation equivalent to H n ( a , b ) {\displaystyle H_{n}(a,b)} Comment
Knuth's up-arrow notation a n 2 b {\displaystyle a\uparrow ^{n-2}b} Used by Knuth (for n ≥ 3), and found in several reference books.
Goodstein's notation G ( n , a , b ) {\displaystyle G(n,a,b)} Used by Reuben Goodstein.
Original Ackermann function ϕ ( a , b , n 1 )    for  1 n 3 ϕ ( a , b 1 , n 1 )    for  n 4 {\displaystyle {\begin{matrix}\phi (a,b,n-1)\ {\text{ for }}1\leq n\leq 3\\\phi (a,b-1,n-1)\ {\text{ for }}n\geq 4\end{matrix}}} Used by Wilhelm Ackermann (for n ≥ 1)
Ackermann–Péter function A ( n , b 3 ) + 3   for  a = 2 {\displaystyle A(n,b-3)+3\ {\text{for }}a=2} This corresponds to hyperoperations for base 2 (a = 2)
Nambiar's notation a n 1 b {\displaystyle a\otimes ^{n-1}b} Used by Nambiar (for n ≥ 1)
Box notation a n b {\displaystyle a{\,{\begin{array}{|c|}\hline {\!n\!}\\\hline \end{array}}\,}b} Used by Rubtsov and Romerio.
Superscript notation a ( n ) b {\displaystyle a{}^{(n)}b} Used by Robert Munafo.
Subscript notation (for lower hyperoperations) a ( n ) b {\displaystyle a{}_{(n)}b} Used for lower hyperoperations by Robert Munafo.
Operator notation (for "extended operations") a O n 1 b {\displaystyle aO_{n-1}b} Used for lower hyperoperations by John Donner and Alfred Tarski (for n ≥ 1).
Square bracket notation a [ n ] b {\displaystyle ab} Used in many online forums; convenient for ASCII.
Conway chained arrow notation a b ( n 2 ) {\displaystyle a\to b\to (n-2)} Used by John Horton Conway (for n ≥ 3)
Bowers' Exploding Array Function a { n } b {\displaystyle a\{n\}b}
{ a , b , n } {\displaystyle \{a,b,n\}}
{ a , b , n , 1 } {\displaystyle \{a,b,n,1\}}
Used by Jonathan Bowers (for n ≥ 1)

Variant starting from a

Main article: Ackermann function

In 1928, Wilhelm Ackermann defined a 3-argument function ϕ ( a , b , n ) {\displaystyle \phi (a,b,n)} which gradually evolved into a 2-argument function known as the Ackermann function. The original Ackermann function ϕ {\displaystyle \phi } was less similar to modern hyperoperations, because his initial conditions start with ϕ ( a , 0 , n ) = a {\displaystyle \phi (a,0,n)=a} for all n > 2. Also he assigned addition to n = 0, multiplication to n = 1 and exponentiation to n = 2, so the initial conditions produce very different operations for tetration and beyond.

n Operation Comment
0 F 0 ( a , b ) = a + b {\displaystyle F_{0}(a,b)=a+b}
1 F 1 ( a , b ) = a b {\displaystyle F_{1}(a,b)=a\cdot b}
2 F 2 ( a , b ) = a b {\displaystyle F_{2}(a,b)=a^{b}}
3 F 3 ( a , b ) = a [ 4 ] ( b + 1 ) {\displaystyle F_{3}(a,b)=a(b+1)} An offset form of tetration. The iteration of this operation is different than the iteration of tetration.
4 F 4 ( a , b ) = ( x a [ 4 ] ( x + 1 ) ) b ( a ) {\displaystyle F_{4}(a,b)=(x\mapsto a(x+1))^{b}(a)} Not to be confused with pentation.

Another initial condition that has been used is A ( 0 , b ) = 2 b + 1 {\displaystyle A(0,b)=2b+1} (where the base is constant a = 2 {\displaystyle a=2} ), due to Rózsa Péter, which does not form a hyperoperation hierarchy.

Variant starting from 0

In 1984, C. W. Clenshaw and F. W. J. Olver began the discussion of using hyperoperations to prevent computer floating-point overflows. Since then, many other authors have renewed interest in the application of hyperoperations to floating-point representation. (Since Hn(a, b) are all defined for b = -1.) While discussing tetration, Clenshaw et al. assumed the initial condition F n ( a , 0 ) = 0 {\displaystyle F_{n}(a,0)=0} , which makes yet another hyperoperation hierarchy. Just like in the previous variant, the fourth operation is very similar to tetration, but offset by one.

n Operation Comment
0 F 0 ( a , b ) = b + 1 {\displaystyle F_{0}(a,b)=b+1}
1 F 1 ( a , b ) = a + b {\displaystyle F_{1}(a,b)=a+b}
2 F 2 ( a , b ) = a b = e ln ( a ) + ln ( b ) {\displaystyle F_{2}(a,b)=a\cdot b=e^{\ln(a)+\ln(b)}}
3 F 3 ( a , b ) = a b {\displaystyle F_{3}(a,b)=a^{b}}
4 F 4 ( a , b ) = a [ 4 ] ( b 1 ) {\displaystyle F_{4}(a,b)=a(b-1)} An offset form of tetration. The iteration of this operation is much different than the iteration of tetration.
5 F 5 ( a , b ) = ( x a [ 4 ] ( x 1 ) ) b ( 0 ) = 0  if  a > 0 {\displaystyle F_{5}(a,b)=\left(x\mapsto a(x-1)\right)^{b}(0)=0{\text{ if }}a>0} Not to be confused with pentation.

Lower hyperoperations

An alternative for these hyperoperations is obtained by evaluation from left to right. Since

a + b = ( a + ( b 1 ) ) + 1 a b = ( a ( b 1 ) ) + a a b = ( a ( b 1 ) ) a {\displaystyle {\begin{aligned}a+b&=(a+(b-1))+1\\a\cdot b&=(a\cdot (b-1))+a\\a^{b}&=\left(a^{(b-1)}\right)\cdot a\end{aligned}}}

define (with ° or subscript)

a ( n + 1 ) b = ( a ( n + 1 ) ( b 1 ) ) ( n ) a {\displaystyle a_{(n+1)}b=\left(a_{(n+1)}(b-1)\right)_{(n)}a}

with

a ( 1 ) b = a + b a ( 2 ) 0 = 0 a ( n ) 1 = a for  n > 2 {\displaystyle {\begin{aligned}a_{(1)}b&=a+b\\a_{(2)}0&=0\\a_{(n)}1&=a&{\text{for }}n>2\\\end{aligned}}}

This was extended to ordinal numbers by Donner and Tarski, by :

α O 0 β = α + β α O γ β = sup η < β , ξ < γ ( α O γ η ) O ξ α {\displaystyle {\begin{aligned}\alpha O_{0}\beta &=\alpha +\beta \\\alpha O_{\gamma }\beta &=\sup \limits _{\eta <\beta ,\xi <\gamma }(\alpha O_{\gamma }\eta )O_{\xi }\alpha \end{aligned}}}

It follows from Definition 1(i), Corollary 2(ii), and Theorem 9, that, for a ≥ 2 and b ≥ 1, that

a O n b = a ( n + 1 ) b {\displaystyle aO_{n}b=a_{(n+1)}b}

But this suffers a kind of collapse, failing to form the "power tower" traditionally expected of hyperoperators:

α ( 4 ) ( 1 + β ) = α ( α β ) . {\displaystyle \alpha _{(4)}(1+\beta )=\alpha ^{\left(\alpha ^{\beta }\right)}.}

If α ≥ 2 and γ ≥ 2,

α ( 1 + 2 γ + 1 ) β α ( 1 + 2 γ ) ( 1 + 3 α β ) . {\displaystyle \alpha _{(1+2\gamma +1)}\beta \leq \alpha _{(1+2\gamma )}(1+3\alpha \beta ).}
n Operation Comment
0 F 0 ( a , b ) = a + 1 {\displaystyle F_{0}(a,b)=a+1} increment, successor, zeration
1 F 1 ( a , b ) = a + b {\displaystyle F_{1}(a,b)=a+b}
2 F 2 ( a , b ) = a b {\displaystyle F_{2}(a,b)=a\cdot b}
3 F 3 ( a , b ) = a b {\displaystyle F_{3}(a,b)=a^{b}} This is exponentiation.
4 F 4 ( a , b ) = a ( a ( b 1 ) ) {\displaystyle F_{4}(a,b)=a^{\left(a^{(b-1)}\right)}} Not to be confused with tetration.
5 F 5 ( a , b ) = ( x x x ( a 1 ) ) b 1 ( a ) {\displaystyle F_{5}(a,b)=\left(x\mapsto x^{x^{(a-1)}}\right)^{b-1}(a)} Not to be confused with pentation.
Similar to tetration.

Commutative hyperoperations

Commutative hyperoperations were considered by Albert Bennett as early as 1914, which is possibly the earliest remark about any hyperoperation sequence. Commutative hyperoperations are defined by the recursion rule

F n + 1 ( a , b ) = exp ( F n ( ln ( a ) , ln ( b ) ) ) {\displaystyle F_{n+1}(a,b)=\exp(F_{n}(\ln(a),\ln(b)))}

which is symmetric in a and b, meaning all hyperoperations are commutative. This sequence does not contain exponentiation, and so does not form a hyperoperation hierarchy.

n Operation Comment
0 F 0 ( a , b ) = ln ( e a + e b ) {\displaystyle F_{0}(a,b)=\ln \left(e^{a}+e^{b}\right)}
1 F 1 ( a , b ) = a + b {\displaystyle F_{1}(a,b)=a+b}
2 F 2 ( a , b ) = a b = e ln ( a ) + ln ( b ) {\displaystyle F_{2}(a,b)=a\cdot b=e^{\ln(a)+\ln(b)}} This is due to the properties of the logarithm.
3 F 3 ( a , b ) = a ln ( b ) = e ln ( a ) ln ( b ) {\displaystyle F_{3}(a,b)=a^{\ln(b)}=e^{\ln(a)\ln(b)}} A commutative form of exponentiation.
4 F 4 ( a , b ) = e e ln ( ln ( a ) ) ln ( ln ( b ) ) {\displaystyle F_{4}(a,b)=e^{e^{\ln(\ln(a))\ln(\ln(b))}}} Not to be confused with tetration.

See also

Notes

  1. Sequences similar to the hyperoperation sequence have historically been referred to by many names, including: the Ackermann function (3-argument), the Ackermann hierarchy, the Grzegorczyk hierarchy (which is more general), Goodstein's version of the Ackermann function, operation of the nth grade, z-fold iterated exponentiation of x with y, arrow operations, reihenalgebra and hyper-n.
  2. ^ Let x = a(−1). By the recursive formula, a0 = a(a(−1)) ⇒ 1 = ax. One solution is x = 0, because a0 = 1 by definition when n ≥ 4. This solution is unique because ab > 1 for all a > 1, b > 0 (proof by recursion).
  3. ^ Ordinal addition is not commutative; see ordinal arithmetic for more information

References

  1. ^ Daniel Geisler (2003). "What lies beyond exponentiation?". Retrieved 2009-04-17.
  2. Harvey M. Friedman (Jul 2001). "Long Finite Sequences". Journal of Combinatorial Theory, Series A. 95 (1): 102–144. doi:10.1006/jcta.2000.3154. Retrieved 2009-04-17.
  3. Manuel Lameiras Campagnola and Cristopher Moore and José Félix Costa (Dec 2002). "Transfinite Ordinals in Recursive Number Theory". Journal of Complexity. 18 (4): 977–1000. doi:10.1006/jcom.2002.0655. Retrieved 2009-04-17.
  4. Marc Wirz (1999). "Characterizing the Grzegorczyk hierarchy by safe recursion". CiteSeer. Retrieved 2009-04-21.
  5. ^ R. L. Goodstein (Dec 1947). "Transfinite Ordinals in Recursive Number Theory". Journal of Symbolic Logic. 12 (4): 123–129. doi:10.2307/2266486. JSTOR 2266486.
  6. ^ Albert A. Bennett (Dec 1915). "Note on an Operation of the Third Grade". Annals of Mathematics. Second Series. 17 (2): 74–75. doi:10.2307/2007124. JSTOR 2007124.
  7. ^ Paul E. Black (2009-03-16). "Ackermann's function". Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology (NIST). Retrieved 2009-04-17. {{cite web}}: External link in |work= (help)
  8. J. E. Littlewood (Jul 1948). "Large Numbers". Mathematical Gazette. 32 (300): 163–171. doi:10.2307/3609933. JSTOR 3609933.
  9. ^ Markus Müller (1993). "Reihenalgebra" (PDF). Retrieved 2009-04-17.
  10. ^ Robert Munafo (November 1999). "Inventing New Operators and Functions". Large Numbers at MROB. Retrieved 2009-04-17.
  11. ^ A. J. Robbins (November 2005). "Home of Tetration". Archived from the original on 13 June 2015. Retrieved 2009-04-17. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  12. ^ I. N. Galidakis (2003). "Mathematics". Archived from the original on April 20, 2009. Retrieved 2009-04-17. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  13. ^ C. A. Rubtsov and G. F. Romerio (December 2005). "Ackermann's Function and New Arithmetical Operation". Retrieved 2009-04-17.
  14. ^ G. F. Romerio (2008-01-21). "Hyperoperations Terminology". Tetration Forum. Retrieved 2009-04-21.
  15. ^ Wilhelm Ackermann (1928). "Zum Hilbertschen Aufbau der reellen Zahlen". Mathematische Annalen. 99: 118–133. doi:10.1007/BF01459088.
  16. Robert Munafo (1999-11-03). "Versions of Ackermann's Function". Large Numbers at MROB. Retrieved 2009-04-17.
  17. J. Cowles and T. Bailey (1988-09-30). "Several Versions of Ackermann's Function". Dept. of Computer Science, University of Wyoming, Laramie, WY. Retrieved 2009-04-17.
  18. Donald E. Knuth (Dec 1976). "Mathematics and Computer Science: Coping with Finiteness". Science. 194 (4271): 1235–1242. doi:10.1126/science.194.4271.1235. PMID 17797067. Retrieved 2009-04-21.
  19. Daniel Zwillinger (2002). CRC standard mathematical tables and formulae, 31st Edition. CRC Press. p. 4. ISBN 1-58488-291-3.
  20. Eric W. Weisstein (2003). CRC concise encyclopedia of mathematics, 2nd Edition. CRC Press. pp. 127–128. ISBN 1-58488-347-2.
  21. K. K. Nambiar (1995). "Ackermann Functions and Transfinite Ordinals". Applied Mathematics Letters. 8 (6): 51–53. doi:10.1016/0893-9659(95)00084-4.
  22. ^ John Donner; Alfred Tarski (1969). "An extended arithmetic of ordinal numbers". Fundamenta Mathematicae. 65: 95–127.
  23. C.W. Clenshaw and F.W.J. Olver (Apr 1984). "Beyond floating point". Journal of the ACM. 31 (2): 319–328. doi:10.1145/62.322429. Retrieved 2009-04-21.
  24. W. N. Holmes (Mar 1997). "Composite Arithmetic: Proposal for a New Standard". Computer. 30 (3): 65–73. doi:10.1109/2.573666. Retrieved 2009-04-21.
  25. R. Zimmermann (1997). "Computer Arithmetic: Principles, Architectures, and VLSI Design" (PDF). Lecture notes, Integrated Systems Laboratory, ETH Zürich. Retrieved 2009-04-17.
  26. T. Pinkiewicz and N. Holmes and T. Jamil (2000). "Design of a composite arithmetic unit for rational numbers". Proceedings of the IEEE. pp. 245–252. Retrieved 2009-04-17.
Hyperoperations
Primary
Inverse for left argument
Inverse for right argument
Related articles
Large numbers
Examples
in
numerical
order
Expression
methods
Notations
Operators
Related
articles
(alphabetical
order)
Categories:
Hyperoperation: Difference between revisions Add topic