Revision as of 10:16, 14 September 2020 editA.Brudz (talk | contribs)143 editsm →Fields← Previous edit | Revision as of 10:20, 14 September 2020 edit undoA.Brudz (talk | contribs)143 edits →MethodsNext edit → | ||
Line 580: | Line 580: | ||
| <code>'''methods''' name «'''importing''' parameter = argument» «'''exporting''' parameter = argument» «'''changing''' parameter = argument» «'''returning value('''parameter''')'''»<br />'''method''' name'''.''' instructions '''endmethod.'''</code><ref>The declaration and implementation of methods in ABAP are separate. '''methods''' statement is to be used inside the class definition. '''method''' (without "s") is to be used inside the class implementation. '''parameter = argument''' can be repeated if there are several parameters.</ref> | | <code>'''methods''' name «'''importing''' parameter = argument» «'''exporting''' parameter = argument» «'''changing''' parameter = argument» «'''returning value('''parameter''')'''»<br />'''method''' name'''.''' instructions '''endmethod.'''</code><ref>The declaration and implementation of methods in ABAP are separate. '''methods''' statement is to be used inside the class definition. '''method''' (without "s") is to be used inside the class implementation. '''parameter = argument''' can be repeated if there are several parameters.</ref> | ||
|<ref>In ABAP, the return parameter name is explicitly defined in the method signature within the class definition</ref> | |<ref>In ABAP, the return parameter name is explicitly defined in the method signature within the class definition</ref> | ||
|- | |||
| APL (Dyalog) | |||
| <code>'''∇''' «left argument» name «right arguments»</code><br><code>instruction</code><br><code>'''∇'''</code> | |||
| <code>'''∇''' result '''←''' «left argument» name «right arguments»</code><br><code>instruction</code><br><code>'''∇'''</code> | |||
|- valign="top" | |- valign="top" | ||
| C++<ref>In C++, declaring and implementing methods is usually separate. Methods are declared in the class definition (which is usually included in a ]) using the syntax</ref> | | C++<ref>In C++, declaring and implementing methods is usually separate. Methods are declared in the class definition (which is usually included in a ]) using the syntax</ref> |
Revision as of 10:20, 14 September 2020
This article may require cleanup to meet Misplaced Pages's quality standards. The specific problem is: This article's reference section contains many footnotes, but lists no external references or sources. Please help improve this article if you can. (June 2013) (Learn how and when to remove this message) |
This comparison of programming languages compares how object-oriented programming languages such as C++, Java, Smalltalk, Object Pascal, Perl, Python, and others manipulate data structures.
Object construction and destruction
construction | destruction | |
---|---|---|
ABAP Objects | data variable type ref to class .
|
|
APL (Dyalog) | variable←⎕NEW class «parameters»
|
⎕EX 'variable'
|
C++ (STL) | class variable«(parameters)»; orclass *variable = new class«(parameters)»;
|
delete pointer;
|
C# | class variable = new class(parameters);
|
variable.Dispose();
|
Java | ||
D | destroy(variable);
| |
eC | class «instance handle» { «properties/data members assignments, instance method overrides» }
|
delete instance handle;
|
Objective-C (Cocoa) | class *variable = init]; or class *variable = initWithFoo:parameter «bar:parameter ...»];
|
;
|
Swift | let variable = class(parameters)
|
|
Python | variable = class(parameters)
|
del variable (Normally not needed)
|
Visual Basic .NET | Dim variable As New class(parameters)
|
variable.Dispose()
|
Xojo | Dim variable As New class(parameters)
|
variable = Nil
|
Eiffel | create variable orcreate «{TYPE}» variable.make_foo «(parameters)» orvariable := create {TYPE} orvariable := create {TYPE}.make_foo «(parameters)»
|
|
PHP | $variable = new class«(parameters)»;
|
unset($variable);
|
Perl 5 | «my »$variable = class->new«(parameters)»;
|
undef($variable);
|
Raku | «my »$variable = class.new«(parameters)»;
|
$variable.undefine;
|
Ruby | variable = class.new«(parameters)»
|
|
Windows PowerShell | $variable = New-Object «-TypeName» class ««-ArgumentList» parameters»
|
Remove-Variable «-Name» variable
|
OCaml | let variable = new class «parameters» or let variable = object members end
|
|
F# | let variable = «new »class(«parameters»)
| |
Smalltalk | The class is an Object. Just send a message to a class, usually #new or #new: , and many others, for example:
Point x: 10 y: 20. Array with: -1 with: 3 with: 2. |
|
JavaScript | var variable = new class«(parameters)» or var variable = { «key1: value1«, key2: value2 ...»»}
|
|
Object Pascal (Delphi) | ClassVar := ClassType.ConstructorName(parameters);
|
ClassVar.Free;
|
Scala | val obj = new Object // no parameters val obj = new Object(arg0, arg1, arg2...) val obj = Object(arg0, arg1, arg2...) // case class val obj = new Object(arg0, arg1, param1 = value1, ...) // named parameters |
|
COBOL | INVOKE class "NEW" RETURNING variable orMOVE class::"NEW" TO variable
|
|
Cobra | variable «as class» = class(parameters)
|
variable.dispose
|
ISLISP | (setq variable (create (class <some-class> ..])))
|
Class declaration
class | protocol | namespace | |
---|---|---|---|
ABAP Objects | class name definition «inheriting from parentclass». «interfaces: interfaces.» method_and_field_declarations endclass.
|
interface name. members endinterface.
|
— |
APL (Dyalog) | :Class name «:parentclass» «,interfaces» members :EndClass
|
:Interface name members :EndInterface
|
:Namespace name members :EndNamespace
|
C++ (STL) | class name« : public parentclasses » { members };
|
namespace name { members }
| |
C# | class name« : «parentclass»«, interfaces»» { members }
|
interface name« : parentinterfaces» { members }
| |
D | module name;
| ||
eC | class name« : base class» { «default member values assignments» «members» }
|
|
namespace name;
|
Java | class name« extends parentclass»« implements interfaces» { members }
|
interface name« extends parentinterfaces» { members }
|
package name; members
|
PHP | namespace name; members
| ||
Objective-C | @interface name« : parentclass» «< protocols >» { instance_fields } method_and_property_declarations @end
|
@protocol name«< parentprotocols >» members @end
|
|
Swift | class name« : «parentclass»«, protocols»» { members }
|
protocol name« : parentprotocols» { members }
|
|
Python | class name«(parentclasses)»:
|
__all__ =
| |
Visual Basic .NET | Class name« Inherits parentclass»« Implements interfaces»
|
Interface name« Inherits parentinterfaces»
|
Namespace name
|
Xojo | Class name« Inherits parentclass»« Implements interfaces»
|
Interface name« Inherits parentinterfaces»
|
Module name
|
Eiffel | class name« inherit parentclasses»
|
— | |
Perl | package name; «@ISA = qw(parentclasses);» members 1;
|
package name; members
| |
Raku | class name «is parentclass «is parentclass ...»» «does role «does role ...»» { members }
|
role name «does role «does role ...»» { members }
|
module name { members }
|
Ruby | class name« < parentclass»
|
module name
| |
Windows PowerShell | — | ||
OCaml | class name «parameters» = object «(self)» «inherit parentclass «parameters» «inherit parentclass «parameters» ...»» members end
|
module name
| |
F# | type name«(parameters)» «as this» = class «inherit parentclass«(parameters)» «as base»» members «interface interface with implementation «interface interface with implementation ...»» end
|
type name = interface members end
|
namespace name
|
Smalltalk | |||
JavaScript (ES6) | class name «extends parentclass» { members }
|
||
Object Pascal (Delphi) |
|
package name; members
| |
Scala | class ConcreteClass(constructor params) extends ParentClass with Trait1 with Trait2 with Trait2 { // members } |
trait TraitName extends OtherTrait1 with OtherTrait2 with OtherTrait3 { // members } |
package name |
COBOL | CLASS-ID. name« INHERITS« FROM» parentclasses».
FACTORY« IMPLEMENTS interfaces». class-members END FACTORY. OBJECT« IMPLEMENTS interfaces». instance-members END OBJECT.
|
INTERFACE-ID. name« INHERITS« FROM» interfaces».
members
|
— |
Cobra | class name «inherits parentclass» «implements interfaces»
|
interface name «inherits parentinterfaces»
|
namespace name
|
ISLISP | (defclass name (base-class) ((x :initform 0 :accessor get-x :initarg x)) (:abstractp nil))
|
Class members
Constructors and destructors
constructor | destructor | finalizer | |
---|---|---|---|
ABAP Objects | methods constructor «importing parameter = argument»
|
— | |
APL (Dyalog) | ∇ name :Implements Constructor «:Base «expr»» instructions ∇
|
∇ name :Implements Destructor instructions ∇
| |
C++ (STL) | class(«parameters») «: initializers » { instructions }
|
~class() { instructions }
|
|
C# | class(«parameters») { instructions }
|
void Dispose(){ instructions }
|
~class() { instructions }
|
D | this(«parameters») { instructions }
|
~this() { instructions }
| |
eC | class() { instructions }
|
~class() { instructions }
|
|
Java | class(«parameters») { instructions }
|
void finalize() { instructions }
| |
Eiffel | |||
Objective-C (Cocoa) | - (id)init { instructions... return self; } or
|
- (void)dealloc { instructions }
|
- (void)finalize { instructions }
|
Swift | init(«parameters») { instructions }
|
deinit { instructions }
|
|
Python | def __init__(self«, parameters»):
|
def __del__(self):
| |
Visual Basic .NET | Sub New(«parameters»)
|
Sub Dispose()
|
Overrides Sub Finalize()
|
Xojo | Sub Constructor(«parameters»)
|
Sub Destructor()
|
|
PHP | function __construct(«parameters») { instructions }
|
function __destruct() { instructions }
|
|
Perl | sub new { my ($class«, parameters») = @_; my $self = {}; instructions ... bless($self, $class); return $self; }
|
sub DESTROY { my ($self) = @_; instructions }
|
|
Raku | submethod BUILD { instructions } or
|
submethod DESTROY { instructions }
|
|
Ruby | def initialize«(parameters)»
|
— | |
Windows PowerShell | — | ||
OCaml | initializer instructions
|
— | |
F# | do instructions or
|
member this.Dispose() = instructions
|
override this.Finalize() = instructions
|
JavaScript | function name(«parameters») { instructions }
|
— | |
JavaScript (ES6) | constructor( «parameters») { instructions }
| ||
COBOL | — | — | |
Cobra | cue init(parameters)
|
def dispose
|
|
ISLISP | (defmethod initialize-object ((instance <class-name>) initvalues)
|
Fields
public | private | protected | friend | |
---|---|---|---|---|
ABAP Objects | public section. data field type type.
|
private section. data field type type.
|
protected section. data field type type.
|
|
APL (Dyalog) | :Field Public field «← value»
|
:Field «Private» field «← value»
|
||
C++ (STL) | public: type field;
|
private: type field;
|
protected: type field;
|
|
C# | public type field «= value»;
|
private type field «= value»;
|
protected type field «= value»;
|
internal type field «= value»;
|
D | package type field «= value»;
| |||
Java | protected type field «= value»;
|
type field «= value»;
| ||
eC | public type field;
|
private type field;
| ||
Eiffel | feature
|
feature {NONE}
|
feature {current_class}
|
feature {FRIEND}
|
Objective-C | @public type field;
|
@private type field;
|
@protected type field;
|
@package type field;
|
Swift | — | |||
Smalltalk | — | — | ||
Python | self.field = value
|
— | — | |
Visual Basic .NET | Public field As type «= value»
|
Private field As type «= value»
|
Protected field As type «= value»
|
Friend field As type «= value»
|
Xojo | Public field As type «= value»
|
Private field As type «= value»
|
Protected field As type «= value»
|
— |
PHP | public $field «= value»;
|
private $field «= value»;
|
protected $field «= value»;
|
|
Perl | $self->{field} = value;
|
— | ||
Raku | has« type »$.field« is rw»
|
has« type »$!field
|
— | |
Ruby | — | @field = value
|
||
Windows PowerShell | Add-Member
|
— | ||
OCaml | — | val «mutable» field = value
|
— | |
F# | — | let «mutable» field = value
|
— | |
JavaScript | this.field = value
|
|||
COBOL | — | level-number field clauses. | — | — |
Cobra | var field «as type» «= value»
|
var __field «as type» «= value»
|
var _field «as type» «= value»
|
|
ISLISP | (field :initform value :accessor accessor-name :initarg keyword)
|
Methods
basic/void method | value-returning method | ||
---|---|---|---|
ABAP Objects | methods name «importing parameter = argument» «exporting parameter = argument» «changing parameter = argument» «returning value(parameter)»
|
||
APL (Dyalog) | ∇ «left argument» name «right arguments» instruction ∇
|
∇ result ← «left argument» name «right arguments» instruction ∇
| |
C++
The implementation of methods is usually provided in a separate source file, with the following syntax
|
void foo(«parameters») { instructions }
|
type foo(«parameters») { instructions ... return value; }
| |
C# | |||
D | |||
Java | |||
eC | void ««type of 'this'»::»foo(«parameters») { instructions }
|
type ««type of this»::»foo(«parameters») { instructions ... return value; }
| |
Eiffel | foo ( «parameters» )
|
foo ( «parameters» ): TYPE
| |
Objective-C | - (void)foo«:parameter «bar:parameter ...»» { instructions }
|
- (type)foo«:parameter «bar:parameter ...»» { instructions... return value; }
| |
Swift | func foo(«parameters») { instructions }
|
func foo(«parameters») -> type { instructions... return value }
| |
Python | def foo(self«, parameters»):
|
def foo(self«, parameters»):
| |
Visual Basic .NET | Sub Foo(«parameters»)
|
Function Foo(«parameters») As type
| |
Xojo | Sub Foo(«parameters»)
|
Function Foo(«parameters») As type
| |
PHP | function foo(«parameters»)«: void» { instructions }
|
function foo(«parameters»)«: type» { instructions ... return value; }
| |
Perl | sub foo { my ($self«, parameters») = @_; instructions }
|
sub foo { my ($self«, parameters») = @_; instructions ... return value; }
| |
Raku | «has »«multi »method foo(««$self: »parameters») { instructions }
|
«has «type »»«multi »method foo(««$self: »parameters») { instructions ... return value; }
| |
Ruby | def foo«(parameters)»
|
def foo«(parameters)»
| |
Windows PowerShell | Add-Member «-MemberType» ScriptMethod «-Name» foo «-Value» { «param(parameters)» instructions } -InputObject variable
|
Add-Member «-MemberType» ScriptMethod «-Name» foo «-Value» { «param(parameters)» instructions ... return value } -InputObject variable
| |
OCaml | — | method foo «parameters» = expression
| |
F# | member this.foo(«parameters») = expression
| ||
JavaScript | this.method = function(«parameters») {instructions}
|
this.method = function(«parameters») {instructions... return value;}
| |
Javascript (ES6) | foo(«parameters») {instructions}
|
foo(«parameters») {instructions... return value;}
| |
COBOL | METHOD-ID. foo.
instructions
|
METHOD-ID. foo.
instructions
| |
Cobra | def foo(parameters)
|
def foo(parameters) as type
|
|
ISLISP | (defgeneric method (arg1 arg2))
|
Properties
How to declare a property named "Bar"
Manually implemented
read-write | read-only | write-only | |
---|---|---|---|
ABAP Objects | — | ||
C++ (STL) | — | ||
C# | type Bar {
|
type Bar { get { instructions ... return value; } }
|
type Bar { set { instructions } }
|
D | @property type bar() { instructions ... return value; }
|
@property type bar() { instructions ... return value; }
|
@property type bar(type value) { instructions ... return value; }
|
eC | property type Bar {
|
property type Bar { get { instructions ... return value; } }
|
property type Bar { set { instructions } }
|
Java | — | ||
Objective-C 2.0 (Cocoa) | @property (readwrite) type bar; and then inside @implementation
|
@property (readonly) type bar; and then inside @implementation
|
— |
Swift | var bar : type { get { instructions } set«(newBar)» { instructions } }
|
var bar : type { instructions }
|
— |
Eiffel | feature -- Access
|
||
Python | def setBar(self, value):
|
def getBar(self):
|
def setBar(self, value):
|
Visual Basic .NET | Property Bar() As type
|
ReadOnly Property Bar() As type
|
WriteOnly Property Bar() As type
|
Xojo | ComputedProperty Bar() As type
|
ComputedProperty Bar() As type
|
ComputedProperty Bar() As type
|
PHP | function __get($property) {
|
function __get($property) {
|
function __set($property, $value) {
|
Perl | sub Bar {
|
sub Bar {
|
sub Bar {
|
Raku | — | ||
Ruby | def bar
|
def bar
|
def bar=(value)
|
Windows PowerShell | Add-Member
|
Add-Member
|
Add-Member
|
OCaml | — | ||
F# | member this.Bar with get() = expression and set(value) = expression
|
member this.Bar = expression
|
member this.Bar with set(value) = expression
|
JavaScript (ES6) | get bar(«parameters») { instructions ... return value}set bar(«parameters») { instructions }
|
get bar(«parameters») { instructions ... return value}
|
set bar(«parameters») { instructions }
|
COBOL | METHOD-ID. GET PROPERTY bar.
instructions
instructions
|
METHOD-ID. GET PROPERTY bar.
instructions
|
METHOD-ID. SET PROPERTY bar.
instructions
|
Cobra | pro bar «as type»
|
get bar «as type»
|
set bar «as type»
|
ISLISP | — |
Automatically implemented
read-write | read-only | write-only | |
---|---|---|---|
ABAP Objects | — | ||
C++ (STL) | — | ||
C# | type Bar { get; set; }
|
type Bar { get; private set; }
|
type Bar { private get; set; }
|
D | — | ||
Java | — | ||
Objective-C 2.0 (Cocoa) | @property (readwrite) type bar; and then inside @implementation
|
@property (readonly) type bar; and then inside @implementation
|
— |
Swift | var bar : type
|
let bar : type
|
— |
Eiffel | |||
Python | @property
|
@property
|
bar = property()
|
Visual Basic .NET | Property Bar As type« = initial_value» (VB 10)
|
||
PHP | |||
Perl | use base qw(Class::Accessor);
|
use base qw(Class::Accessor);
|
use base qw(Class::Accessor);
|
Raku | — | ||
Ruby | attr_accessor :bar
|
attr_reader :bar
|
attr_writer :bar
|
Windows PowerShell | |||
OCaml | — | ||
F# | member val Bar = value with get, set
|
||
COBOL | level-number bar clauses PROPERTY.
|
level-number bar clauses PROPERTY «WITH» NO SET.
|
level-number bar clauses PROPERTY «WITH» NO GET.
|
Cobra | pro bar from var «as type»
|
get bar from var «as type»
|
set bar from var «as type»
|
Overloaded operators
Standard operators
unary | binary | function call | |
---|---|---|---|
ABAP Objects | — | ||
C++ (STL) | type operator symbol () { instructions }
|
type operator symbol (type operand2) { instructions }
|
type operator () («parameters») { instructions }
|
C# | static type operator symbol(type operand) { instructions }
|
static type operator symbol(type operand1, type operand2) { instructions }
|
— |
D | type opUnary(string s)() if (s == "symbol") { instructions }
|
type opBinary(string s)(type operand2) if (s == "symbol") { instructions }
|
type opCall(«parameters») { instructions }
|
Java | — | ||
Objective-C | |||
Swift | func symbol(operand1 : type) -> returntype { instructions } (outside class)
|
func symbol(operand1 : type1, operand2 : type2) -> returntype { instructions } (outside class)
|
|
Eiffel | op_name alias "symbol": TYPE
|
op_name alias "symbol" (operand: TYPE1): TYPE2
|
|
Python | def __opname__(self):
|
def __opname__(self, operand2):
|
def __call__(self«, paramters»):
|
Visual Basic .NET | Shared Operator symbol(operand As type) As type
|
Shared Operator symbol(operand1 As type, operand2 As type) As type
|
— |
Xojo | Function Operator_name(operand As type) As type
|
— | |
PHP | function __invoke(«parameters») { instructions } (PHP 5.3+)
| ||
Perl | use overload "symbol" => sub { my ($self) = @_; instructions };
|
use overload "symbol" => sub { my ($self, $operand2, $operands_reversed) = @_; instructions };
|
|
Raku | «our «type »»«multi »method prefix:<symbol> («$operand: ») { instructions ... return value; } or
|
«our «type »»«multi »method infix:<symbol> («$operand1: » type operand2) { instructions ... return value; }
|
«our «type »»«multi »method postcircumfix:<( )> («$self: » «parameters») { instructions }
|
Ruby | def symbol
|
def symbol(operand2)
|
— |
Windows PowerShell | — | ||
OCaml | |||
F# | static member (symbol) operand = expression
|
static member (symbol) (operand1, operand2) = expression
|
— |
COBOL | — | ||
ISLISP | — |
Indexers
read-write | read-only | write-only | |
---|---|---|---|
ABAP Objects | — | ||
C++ (STL) | type& operator(type index) { instructions }
|
type operator(type index) { instructions }
|
|
C# | type this {
|
type this { get{ instructions } }
|
type this { set{ instructions } }
|
D | type opIndex(type index) { instructions }
|
type opIndex(type index) { instructions }
|
type opIndexAssign(type value, type index) { instructions }
|
Java | — | ||
Objective-C (recent Clang compiler) | — | - (id)objectAtIndexedSubscript:(NSUInteger)index { instructions return value; } or
|
- (void)setObject:(id)value atIndexedSubscript:(NSUInteger)index { instructions } or
|
Swift | subscript (index : type) -> returntype { get { instructions } set«(newIndex)» { instructions } }
|
subscript (index : type) -> returntype { instructions }
|
|
Eiffel | bracket_name alias "" (index: TYPE): TYPE assign set_item
|
bracket_name alias "" (index: TYPE): TYPE
|
|
Python | def __getitem__(self, index):
|
def __getitem__(self, index):
|
def __setitem__(self, index, value):
|
Visual Basic .NET | Default Property Item(Index As type) As type
|
Default ReadOnly Property Item(Index As type) As type
|
Default WriteOnly Property Item(Index As type) As type
|
PHP | |||
Perl | |||
Raku | «our «type »»«multi »method postcircumfix:<> is rw («$self: » type $index) { instructions ... return value; } or
|
«our «type »»«multi »method postcircumfix:<>(«$self: » type $index) { instructions ... return value; } or
|
— |
Ruby | def (index)
|
def (index)
|
def =(index, value)
|
Windows PowerShell | — | ||
OCaml | |||
F# | member this.Item with get(index) = expression and set index value = expression
|
member this.Item with get(index) = expression
|
member this.Item with set index value = expression
|
COBOL | — | ||
Cobra | pro as type
|
get as type
|
set as type
|
Type casts
downcast | upcast | |
---|---|---|
ABAP Objects | — | |
C++ (STL) | operator returntype() { instructions }
| |
C# | static explicit operator returntype(type operand) { instructions }
|
static implicit operator returntype(type operand) { instructions }
|
D | T opCast(T)() if (is(T == type)) { instructions }
| |
eC | property T { get { return «conversion code»; } }
| |
Java | — | |
Objective-C | ||
Eiffel | ||
Python | ||
Visual Basic .NET | Shared Narrowing Operator CType(operand As type) As returntype
|
Shared Widening Operator CType(operand As type) As returntype
|
PHP | — | |
Perl | ||
Raku | multi method type«($self:)» is export { instructions }
| |
Ruby | — | |
Windows PowerShell | ||
OCaml | ||
F# | ||
COBOL | — |
Member access
How to access members of an object x
object member | class member | namespace member | |||
---|---|---|---|---|---|
method | field | property | |||
ABAP Objects | x->method(«parameters»).
|
x->field
|
— | x=>field or x=>method(«parameters»).
|
— |
C++ (STL) | x.method(parameters) or
|
x.field or
|
cls::member
|
ns::member
| |
Objective-C |
|
x->field
|
x.property (2.0 only) or
|
|
|
Smalltalk | x method«:parameter «bar:parameter ...»»
|
— | cls method«:parameter «bar:parameter ...»»
|
||
Swift | x.method(parameters)
|
x.property
|
cls.member
|
||
C# | x.method(parameters)
|
x.field
|
x.property
|
cls.member
|
ns.member
|
Java | — | ||||
D | x.property
| ||||
Python | |||||
Visual Basic .NET | |||||
Xojo | |||||
Windows PowerShell | ::member
| ||||
F# | — | cls.member
| |||
eC | x.method«(parameters)»
|
x.field
|
x.property
|
cls::member
|
ns::member
|
Eiffel | x.method«(parameters)»
|
x.field
|
{cls}.member
|
— | |
Ruby | — | x.property
|
cls.member
| ||
PHP | x->method(parameters)
|
x->field
|
x->property
|
cls::member
|
ns\member
|
Perl | x->method«(parameters)»
|
x->{field}
|
cls->method«(parameters)»
|
ns::member
| |
Raku | x.method«(parameters)» or
|
x.field or
|
cls.method«(parameters)» or
|
ns::member
| |
OCaml | x#method «parameters»
|
— | |||
JavaScript | x.method(parameters)
|
x.field
|
x.property
|
cls.member
|
— |
COBOL | INVOKE x "method" «USING parameters» «RETURNING result» or
|
— | property OF x
|
INVOKE cls "method" «USING parameters» «RETURNING result» or
|
— |
Cobra | x.method«(parameters)»
|
x.field
|
x.property
|
cls.member
|
ns.member
|
Member availability
Has member? | Handler for missing member | |||
---|---|---|---|---|
Method | Field | Method | Field | |
ABAP Objects | — | |||
C++ (STL) | ||||
Objective-C (Cocoa) |
|
— | forwardInvocation:
|
— |
Smalltalk | x respondsTo: selector
|
— | doesNotUnderstand:
|
— |
C# | (using reflection) | |||
eC | ||||
Java | ||||
D | opDispatch()
| |||
Eiffel | — | |||
Python | hasattr(x, "method") and callable(x.method)
|
hasattr(x, "field")
|
__getattr__()
| |
Visual Basic .NET | (using reflection) | |||
Xojo | (using Introspection) | |||
Windows PowerShell | (using reflection) | |||
F# | (using reflection) | |||
Ruby | x.respond_to?(:method)
|
— | method_missing()
|
— |
PHP | method_exists(x, "method")
|
property_exists(x, "field")
|
__call()
|
__get() / __set()
|
Perl | x->can("method")
|
exists x->{field}
|
AUTOLOAD | |
Raku | x.can("method")
|
x.field.defined
|
AUTOLOAD | |
OCaml | — | |||
JavaScript | typeof x.method === "function"
|
field in x
|
||
COBOL | — |
Special variables
current object | current object's parent object | null reference | Current Context of Execution | |
---|---|---|---|---|
Smalltalk | self
|
super
|
nil
|
thisContext
|
ABAP Objects | me
|
super
|
initial
|
|
C++ (STL) | *this
|
NULL, nullptr
|
||
C# | this
|
base
|
null
|
|
Java | super
|
|||
D | ||||
JavaScript | super (ECMAScript 6)
|
null, undefined
|
||
eC | this
|
null
|
||
Objective-C | self
|
super
|
nil
|
|
Swift | self
|
super
|
nil
|
|
Python | self
|
super(current_class_name, self) super() (3.x only)
|
None
|
|
Visual Basic .NET | Me
|
MyBase
|
Nothing
|
|
Xojo | Me / Self
|
Parent
|
Nil
|
|
Eiffel | Current
|
Precursor «{superclass}» «(args)»
|
Void
|
|
PHP | $this
|
parent
|
null
|
|
Perl | $self
|
$self->SUPER
|
undef
|
|
Raku | self
|
SUPER
|
Nil
|
|
Ruby | self
|
super«(args)»
|
nil
|
binding
|
Windows PowerShell | $this
|
$NULL
|
||
OCaml | self
|
super
|
— | |
F# | this
|
base
|
null
|
|
COBOL | SELF
|
SUPER
|
NULL
|
|
Cobra | this
|
base
|
nil
|
Special methods
String representation | Object copy | Value equality | Object comparison | Hash code | Object ID | ||
---|---|---|---|---|---|---|---|
Human-readable | Source-compatible | ||||||
ABAP Objects | — | ||||||
C++ (STL) | x == y
|
pointer to object can be converted into an integer ID | |||||
C# | x.ToString()
|
x.Clone()
|
x.Equals(y)
|
x.CompareTo(y)
|
x.GetHashCode()
|
System
| |
Java | x.toString()
|
x.clone()
|
x.equals(y)
|
x.compareTo(y)
|
x.hashCode()
|
System
| |
JavaScript | x.toString()
|
||||||
D | x.toString() or
|
x.stringof
|
x == y or
|
x.opCmp(y)
|
x.toHash()
|
||
eC | x.OnGetString(tempString, null, null) or
|
y.OnCopy(x)
|
x.OnCompare(y)
|
object handle can be converted into an integer ID | |||
Objective-C (Cocoa) | x.description
|
x.debugDescription
|
|
|
|
x.hash
|
pointer to object can be converted into an integer ID |
Swift | x.description
|
x.debugDescription
|
x == y
|
x < y
|
x.hashValue
|
reflect(x)
| |
Smalltalk | x displayString
|
x printString
|
x copy
|
x = y
|
x hash
|
x identityHash
| |
Python | str(x)
|
repr(x)
|
copy.copy(x)
|
x == y
|
cmp(x, y)
|
hash(x)
|
id(x)
|
Visual Basic .NET | x.ToString()
|
x.Clone()
|
x.Equals(y)
|
x.CompareTo(y)
|
x.GetHashCode()
|
||
Eiffel | x.out
|
x.twin
|
x.is_equal(y)
|
When x is COMPARABLE , one can simply do x < y
|
When x is HASHABLE , one can use x.hash_code
|
When x is IDENTIFIED , one can use x.object_id
| |
PHP | $x->__toString()
|
clone x
|
x == y
|
|
spl_object_hash(x)
| ||
Perl | "$x"
|
Data::Dumper
|
Storable
|
Scalar
| |||
Raku | ~x
|
x.perl
|
x.clone
|
x eqv y
|
x cmp y
|
x.WHICH
| |
Ruby | x.to_s
|
x.inspect
|
x.dup or
|
x == y or
|
x <=> y
|
x.hash
|
x.object_id
|
Windows PowerShell | x.ToString()
|
x.Clone()
|
x.Equals(y)
|
x.CompareTo(y)
|
x.GetHashCode()
|
||
OCaml | Oo.copy x
|
x = y
|
Hashtbl
|
Oo.id x
| |||
F# | string x or x
|
sprintf "%A" x
|
x.Clone()
|
x = y or x
|
compare x y or x
|
hash x or x
|
|
COBOL | — |
Type manipulation
Get object type | Is instance of (includes subtypes) | Upcasting | Downcasting | ||
---|---|---|---|---|---|
Runtime check | No check | ||||
ABAP Objects | — | = | ?= | ||
C++ (STL) | typeid(x)
|
dynamic_cast<type *>(&x) != nullptr
|
— | dynamic_cast<type*>(ptr)
|
(type*) ptr or
|
C# | x.GetType()
|
x is type
|
(type) x or x as type
|
||
D | typeid(x)
|
cast(type) x
|
|||
Delphi | x is type
|
x as type
|
|||
eC | x._class
|
eClass_IsDerived(x._class, type)
|
(type) x
| ||
Java | x.getClass()
|
x instanceof class
|
(type) x
|
||
Objective-C (Cocoa) |
|
]
|
(type*) x
| ||
Swift | x.dynamicType
|
x is type
|
x as! type x as? type
| ||
JavaScript | x.constructor (If not rewritten.)
|
x instanceof class
|
— | ||
Visual Basic .NET | x.GetType()
|
TypeOf x Is type
|
— | CType(x, type) or TryCast(x, type)
|
|
Xojo | Introspection.GetType(x)
|
x IsA type
|
— | CType(x, type)
|
— |
Eiffel | x.generating_type
|
attached {TYPE} x
|
attached {TYPE} x as down_x
|
||
Python | type(x)
|
isinstance(x, type)
|
— | ||
PHP | get_class(x)
|
x instanceof class
| |||
Perl | ref(x)
|
x->isa("class")
| |||
Raku | x.WHAT
|
x.isa(class)
|
— | type(x) or
|
|
Ruby | x.class
|
x.instance_of?(type) or
|
— | ||
Smalltalk | x class
|
x isKindOf: class
| |||
Windows PowerShell | x.GetType()
|
x -is
|
— | x or x -as
|
|
OCaml | — | (x :> type)
|
— | ||
F# | x.GetType()
|
x :? type
|
(x :?> type)
|
||
COBOL | — | x AS type
|
— |
Namespace management
Import namespace | Import item | ||
---|---|---|---|
qualified | unqualified | ||
ABAP Objects | |||
C++ (STL) | using namespace ns;
|
using ns::item ;
| |
C# | using ns;
|
using item = ns.item;
| |
D | import ns;
|
import ns : item;
| |
Java | import ns.*;
|
import ns.item;
| |
Objective-C | |||
Visual Basic .NET | Imports ns
|
||
Eiffel | |||
Python | import ns
|
from ns import *
|
from ns import item
|
PHP | use ns;
|
use ns\item;
| |
Perl | use ns;
|
use ns qw(item);
| |
Raku | |||
Ruby | |||
Windows PowerShell | |||
OCaml | open ns
|
||
F# | |||
COBOL | — |
Contracts
Precondition | Postcondition | Check | Invariant | Loop | |
---|---|---|---|---|---|
ABAP Objects | — | ||||
C++ (STL) | |||||
C# | Spec#:
|
Spec#:
| |||
Java | — | ||||
Objective-C | |||||
Visual Basic .NET | |||||
D | f
|
f
|
assert(expression)
|
invariant() { expression }
|
|
Eiffel | f
|
f
|
f
|
class X
|
from instructions
|
Python | — | ||||
PHP | |||||
Perl | |||||
Raku | PRE { condition }
|
POST { condition }
|
|||
Ruby | — | ||||
Windows PowerShell | |||||
OCaml | |||||
F# | |||||
COBOL |
See also
References and notes
- parameter = argument may be repeated if the constructor has several parameters
- SAP reserved to himself the use of destruction
- ^ This language uses garbage collection to release unused memory.
- OCaml objects can be created directly without going through a class.
- ^ This language supports multiple inheritance. A class can have more than one parent class
- Not providing a parent class makes the class a root class. In practice, this is almost never done. One should generally use the conventional base class of the framework one is using, which is
NSObject
for Cocoa and GNUstep, orObject
otherwise. - Usually the
@interface
portion is placed into a header file, and the@interface
portion is placed into a separate source code file. - Prefixes to class and protocol names conventionally used as a kind of namespace
- In Python interfaces are classes which methods have pass as their bodies
- The class is an Object.
Just send a message to the superclass (st-80) or the destination namespace (Visualworks). - The namespace is an Object.
Just send a message to the parent namespace. - A finalizer is called by the garbage collector when an object is about to be garbage-collected. There is no guarantee on when it will be called or if it will be called at all.
- In ABAP, the constructor is to be defined like a method (see comments about method) with the following restrictions: the method name must be "constructor", and only "importing" parameters can be defined
- An optional comma-separated list of initializers for member objects and parent classes goes here. The syntax for initializing member objects is
"member_name(parameters)"
"class_name(parameters)".
- Any Eiffel procedure can be used as a creation procedure, aka constructors. See Eiffel paragraph at Constructor (computer science).
- Implementing {DISPOSABLE}.dispose ensures that dispose will be called when object is garbage collected.
- This "initializer" construct is rarely used. Fields in OCaml are usually initialized directly in their declaration. Only when additional imperative operations are needed is "initializer" used. The "parameters to the constructor" in other languages are instead specified as the parameters to the class in OCaml. See the class declaration syntax for more details.
- This syntax is usually used to overload constructors
- In JavaScript, constructor is an object.
- Constructors can be emulated with a factory method returning a class instance.
- ^ Scope identifier must appear once in the file declaration, all variable declarations after this scope identifier have his scope, until another scope identifier or the end of class declaration is reached
- In ABAP, specific fields or methods are not declared as accessible by outside things. Rather, outside classes are declared as friends to have access to the class's fields or methods.
- In C++, specific fields are not declared as accessible by outside things. Rather, outside functions and classes are declared as friends to have access to the class's fields. See friend function and friend class for more details.
- Just send a message to the class
class addInstVarName: field. class removeInstVarName: field.
- ^ Just assign a value to it in a method
- Python doesn't have private fields - all fields are publicly accessible at all times. A community convention exists to prefix implementation details with one underscore, but this is unenforced by the language.
- All class data is 'private' because the COBOL standard does not specify any way to access it.
- The declaration and implementation of methods in ABAP are separate. methods statement is to be used inside the class definition. method (without "s") is to be used inside the class implementation. parameter = argument can be repeated if there are several parameters.
- In ABAP, the return parameter name is explicitly defined in the method signature within the class definition
- In C++, declaring and implementing methods is usually separate. Methods are declared in the class definition (which is usually included in a header file) using the syntax
- Although the body of a method can be included with the declaration inside the class definition, as shown in the table here, this is generally bad practice. Because the class definition must be included with every source file which uses the fields or methods of the class, having code in the class definition causes the method code to be compiled with every source file, increasing the size of the code. Yet, in some circumstances, it is useful to include the body of a method with the declaration. One reason is that the compiler will try to inline methods that are included in the class declaration; so if a very short one-line method occurs, it may make it faster to allow a compiler to inline it, by including the body along with the declaration. Also, if a template class or method occurs, then all the code must be included with the declaration, because only with the code can the template be instantiated.
- ^ Just assign a function to it in a method
- Alternative implementation:
def bar(): doc = "The bar property." def fget(self): return self._bar def fset(self, value): self._bar = value return locals() bar = property(**bar())
- these examples need the Class::Accessor module installed
- ^ Although Eiffel does not support overloading of operators, it can define operators
- PHP does not support operator overloading natively, but support can be added using the "operator" PECL package.
- The class must implement the ArrayAccess interface.
- The class must overload '@{}' (array dereference) or subclass one of Tie::Array or Tie::StdArray to hook array operations
- ^ In ABAP, arguments must be passed using this syntax:
x->method(«exporting parameter = argument» «importing parameter = argument» «changing parameter = argument» «returning value(parameter)»
parameter = argument
can be repeated if there are several parameters
- C++ doesn't have a "super" keyword, because multiple inheritance is possible, and so it may be ambiguous which base class is referenced. Instead, the
BaseClassName::member
syntax can be used to access an overridden member in the specified base class. Microsoft Visual C++ provides a non-standard keyword "__super" for this purpose; but this is unsupported in other compilers. - ^ The keyword here is not a value, and it can only be used to access a method of the superclass.
- But be afraid, they have not the same value.
- only for Optional types
- ^ In this language, instance methods are passed the current object as the first parameter, which is conventionally named "self", but this is not required to be the case.
- "Precursor" in Eiffel is actually a call to the method of the same name in the superclass. So Precursor(args) is equivalent to "super.currentMethodName(args)" in Java. There is no way of calling a method of different name in the superclass.
- "super" in Ruby, unlike in other languages, is actually a call to the method of the same name in the superclass. So super(args) in Ruby is equivalent to "super.currentMethodName(args)" in Java. There is no way of calling a method of different name in the superclass.
- In OCaml, an object declaration can optionally start with a parameter which will be associated with the current object. This parameter is conventionally named "self", but this is not required to be the case. It is good practice to put a parameter there so that one can call one's own methods.
- In OCaml, an inheritance declaration ("inherit") can optionally be associated with a value, with the syntax "inherit parent_class «parameters» as super". Here "super" is the name given to the variable associated with this parent object. It can be named differently.
- However, if the ability to have an "optional" value in OCaml is needed, then wrap the value inside an
option
type, which values areNone
andSome x
, which could be used to represent "null reference" and "non-null reference to an object" as in other languages. - assuming that "x" and "y" are the objects (and not a pointer). Can be customized by overloading the object's
==
operator - Only accessible from within the class, since the
clone()
method inherited fromObject
is protected, unless the class overrides the method and makes it public. If using theclone()
inherited fromObject
, the class must implement theCloneable
interface to allow cloning. - The class should implement the interface
Comparable
for this method to be standardized. - Implemented by the object's
copyWithZone:
method -
compare:
is the conventional name for the comparison method in Foundation classes. However, no formal protocol exists - Only if object conforms to the
Printable
protocol - Only if object conforms to the
DebugPrintable
protocol - Only if object conforms to the
Equatable
protocol - Only if object conforms to the
Comparable
protocol - Only if object conforms to the
hashValue
protocol - Can be customized by the object's
__str__()
method - Can be customized by the object's
__repr__()
method - Can be customized by the object's
__copy__()
method - Can be customized by the object's
__eq__()
method - Only in Python 2.x and before (removed in Python 3.0). Can be customized by the object's
__cmp__()
method - Can be customized by the object's
__hash__()
method. Not all types are hashable (mutable types are usually not hashable) - Can be customized by the object's
__clone()
method - ^ Can be customized by overloading the object's string conversion operator
- This example requires useing Data::Dumper
- This example requires useing Storable
- This example requires useing Scalar::Util
- Run-time type information in ABAP can be gathered by using different description Classes like CL_ABAP_CLASSDESCR.
- ^ Upcasting is implicit in this language. A subtype instance can be used where a supertype is needed.
- Only for non-class objects. If
x
is a class object,returns only
x
. The runtime methodobject_getClass(x)
will return the class ofx
for all objects. - ^ This language is dynamically typed. Casting between types is unneeded.
- This language doesn't give run-time type information. It is unneeded because it is statically typed and downcasting is impossible.