Misplaced Pages

Potassium picrate

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is the current revision of this page, as edited by GünniX (talk | contribs) at 04:40, 14 December 2023 (Reflist). The present address (URL) is a permanent link to this version.

Revision as of 04:40, 14 December 2023 by GünniX (talk | contribs) (Reflist)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Potassium Picrate" – news · newspapers · books · scholar · JSTOR (December 2023) (Learn how and when to remove this message)
Potassium picrate
Names
Preferred IUPAC name Potassium 2,4,6-trinitrophenoxide
Other names Potassium 2,4,6-trinitrophenolate; Picric acid, potassium salt
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.008.511 Edit this at Wikidata
EC Number
  • 209-361-0
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C6H3N3O7.K/c10-6-4(8(13)14)1-3(7(11)12)2-5(6)9(15)16;/h1-2,10H;/q;+1/p-1Key: RBGOCSKFMWMTRZ-UHFFFAOYSA-M
  • InChI=1/C6H3N3O7.K/c10-6-4(8(13)14)1-3(7(11)12)2-5(6)9(15)16;/h1-2,10H;/q;+1/p-1Key: RBGOCSKFMWMTRZ-REWHXWOFAJ
SMILES
  • c1c(cc(c(c1(=O)))(=O))(=O).
Properties
Chemical formula C6H2KN3O7; C6H2(NO2)3OK
Molar mass 267.194 g/mol
Density 1.852 g/cm3
Melting point 250 °C (482 °F; 523 K)
Boiling point Detonates at 331 °C before boiling
Hazards
Occupational safety and health (OHS/OSH):
Main hazards Explosive and toxic
GHS labelling:
Pictograms GHS01: ExplosiveGHS06: Toxic
Signal word Danger
Hazard statements H200, H301, H311, H331
Precautionary statements P201, P202, P261, P264, P270, P271, P280, P281, P301+P310, P302+P352, P304+P340, P311, P312, P321, P322, P330, P361, P363, P372, P373, P380, P401, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Potassium picrate, or potassium 2,4,6-trinitrophenolate, is an organic chemical, a picrate of potassium. It is a reddish yellow or green crystalline material. It is a primary explosive. Anhydrous potassium picrate forms orthorhombic crystals.

History

Potassium picrate was first prepared in impure form in the mid 17th century by Johann Rudolf Glauber by dissolving wood in nitric acid and neutralizing with potassium carbonate. It is commonly made by neutralizing picric acid with potassium carbonate. It has been used in industry since the 1860s.

Potassium Picrate and picric acid were formerly used in pyrotechnics to produce whistle effects, but since mixes that don't involve primary explosives have since been developed it is no longer used in that industry. Its chief applications were as a component of explosives (with potassium nitrate and charcoal), propellants (with the same substances in the poudre Dessignole of the 1870s French Navy), and in explosive primers (with lead picrate and potassium chlorate).

Description

Potassium picrate is not a very powerful explosive. It is somewhat shock-sensitive. In contact with flame it deflagrates with a loud sound. If ignited in confined space, it will detonate. It is more sensitive than picric acid.

In contact with metals (e.g. lead, calcium, iron), potassium picrate, like ammonium picrate and picric acid, forms picrates of said metals. These are often more dangerous and more sensitive explosives. Contact with such materials therefore should be prevented.

Potassium picrate is used to determine the concentration of nonionic surfactants in water; materials detectable by this method are called potassium picrate active substances (PPAS).

Synthesis

As with other picrates, potassium picrate may be produced by the neutralization of picric acid with the corresponding carbonate. As picric acid is barely soluble in water the reaction must be done in an appropriate solvent like methanol. First dissolving the picric acid in methanol and then adding potassium carbonate will result in potassium picrate. Temperature control is important to prevent detonation or excessive methanol evaporation.

Sensitivity

According to Urbanski, Potassium picrate detonated 10% of the time when struck by a mass of 2kg dropped from the height of 21cm. By comparison, the more sensitive anhydrous lead picrate detonated 10% of the time when struck by the same mass dropped from the height of 2cm.

See also

References

  1. ^ Kaye, Seymour M. (1978). Encyclopedia of Explosives and Related Items (PDF) (8 ed.). Picatinny Arsenal, NJ, USA: U.S. ARMY RESEARCH AND DEVELOPMENT COMMAND TACOM, ARDEC WARHEADS, ENERGETICS AND COMBAT SUPPORT CENTER. p. 761. Retrieved 9 December 2023.
  1. Urbanski, Tadeusz (1964), Chemistry and Technology of Explosives, Volume 1, New York: Pergamon Press.
Categories:
Potassium picrate Add topic