Misplaced Pages

Titan (moon)

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is the current revision of this page, as edited by Lyokocentipoid (talk | contribs) at 11:32, 23 January 2025 (Added link in "Josep Comas i Solà"). The present address (URL) is a permanent link to this version.

Revision as of 11:32, 23 January 2025 by Lyokocentipoid (talk | contribs) (Added link in "Josep Comas i Solà")(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) Largest moon of Saturn and second-largest moon in Solar System Not to be confused with Titania (moon) or Triton (moon).

Titan
Image of a thick atmosphere that is yellow due to a dense organonitrogen hazeTitan, imaged by the Cassini orbiter, December 2011. A thick shroud of organic haze permanently obscures Titan's surface from viewing in visible light
Discovery
Discovered byChristiaan Huygens
Discovery dateMarch 25, 1655
Designations
DesignationSaturn VI
Pronunciation/ˈtaɪtən/
Named afterΤῑτάν Tītan
AdjectivesTitanian or Titanean (both /taɪˈteɪniən/)
Orbital characteristics
Periapsis1186680 km
Apoapsis1257060 km
Semi-major axis1221870 km
Eccentricity0.0288
Orbital period (sidereal)15.945 d
Average orbital speed5.57 km/s (calculated)
Inclination0.34854° (to Saturn's equator)
Satellite ofSaturn
Physical characteristics
Mean radius2574.73±0.09 km (0.404 Earths)
Surface area8.33×10 km (0.163 Earths)
Volume7.16×10 km (0.066 Earths)
Mass(1.3452±0.0002)×10 kg
(0.0225 Earths)
Mean density1.8798±0.0044 g/cm
Surface gravity1.352 m/s (0.138 g)
Moment of inertia factor0.3414±0.0005 (estimate)
Escape velocity2.641 km/s
Synodic rotation periodSynchronous
Axial tiltZero (to the orbital plane);
27° (to the sun)
Albedo0.22 (geometric)
0.265±0.03 (Bond)
Temperature93.7 K (−179.5 °C)
Apparent magnitude8.2 to 9.0
Atmosphere
Surface pressure146.7 kPa (1.45 atm)
Composition by volumeVariable

Stratosphere:
98.4% nitrogen (N
2),
1.4% methane (CH
4),
0.2% hydrogen (H
2);

Lower troposphere:
95.0% N
2, 4.9% CH
4;
97% N
2, 2.7±0.1% CH
4, 0.1–0.2% H
2

Titan is the largest moon of Saturn and the second-largest in the Solar System. It is the only moon known to have an atmosphere denser than the Earth's and is the only known object in space—other than Earth—on which there is clear evidence that stable bodies of liquid exist. Titan is one of seven gravitationally rounded moons of Saturn and the second-most distant among them. Frequently described as a planet-like moon, Titan is 50% larger in diameter than Earth's Moon and 80% more massive. It is the second-largest moon in the Solar System after Jupiter's Ganymede and is larger than Mercury; yet Titan is only 40% as massive as Mercury, because Mercury is mainly iron and rock while much of Titan is ice, which is less dense.

Discovered in 1655 by the Dutch astronomer Christiaan Huygens, Titan was the first known moon of Saturn and the sixth known planetary satellite (after Earth's moon and the four Galilean moons of Jupiter). Titan orbits Saturn at 20 Saturn radii or 1,200,000 km above Saturn's apparent surface. From Titan's surface, Saturn subtends an arc of 5.09 degrees, and if it were visible through the moon's thick atmosphere, it would appear 11.4 times larger in the sky, in diameter, than the Moon from Earth, which subtends 0.48° of arc.

Titan is primarily composed of ice and rocky material, with a rocky core surrounded by various layers of ice, including a crust of ice Ih and a subsurface layer of ammonia-rich liquid water. Much as with Venus before the Space Age, the dense opaque atmosphere prevented understanding of Titan's surface until the Cassini–Huygens mission in 2004 provided new information, including the discovery of liquid hydrocarbon lakes in Titan's polar regions and the discovery of its atmospheric super-rotation. The geologically young surface is generally smooth, with few impact craters, although mountains and several possible cryovolcanoes have been found.

The atmosphere of Titan is mainly nitrogen and methane; minor components lead to the formation of hydrocarbon clouds and heavy organonitrogen haze. Its climate—including wind and rain—creates surface features similar to those of Earth, such as dunes, rivers, lakes, seas (probably of liquid methane and ethane), and deltas, and is dominated by seasonal weather patterns as on Earth. With its liquids (both surface and subsurface) and robust nitrogen atmosphere, Titan's methane cycle nearly resembles Earth's water cycle, albeit at a much lower temperature of about 94 K (−179 °C; −290 °F). Due to these factors, Titan is called the most Earth-like celestial object in the Solar System.

Discovery and naming

Christiaan Huygens discovered Titan in 1655.

The Dutch astronomer Christiaan Huygens discovered Titan on March 25, 1655. Fascinated by Galileo's 1610 discovery of Jupiter's four largest moons and his advancements in telescope technology, Huygens, with the help of his elder brother Constantijn Huygens Jr., began building telescopes around 1650 and discovered the first observed moon orbiting Saturn with one of the telescopes they built.

Huygens named his discovery Saturni Luna (or Luna Saturni, Latin for "moon of Saturn"), publishing in the 1655 tract De Saturni Luna Observatio Nova (A New Observation of Saturn's Moon). After Giovanni Domenico Cassini published his discoveries of four more moons of Saturn between 1673 and 1686, astronomers began referring to these and Titan as Saturn I through V (with Titan then in fourth position). Other early epithets for Titan include "Saturn's ordinary satellite." The International Astronomical Union officially numbers Titan as "Saturn VI."

The name Titan, and the names of all seven satellites of Saturn then known, came from John Herschel (son of William Herschel, discoverer of two other Saturnian moons, Mimas and Enceladus), in his 1847 publication Results of Astronomical Observations Made during the Years 1834, 5, 6, 7, 8, at the Cape of Good Hope. Numerous small moons have been discovered around Saturn since then. Saturnian moons are named after mythological giants. The name Titan comes from the Titans, a race of immortals in Greek mythology.

Formation

The regular moons of Jupiter and Saturn likely formed via co-accretion, similar to the process believed to have formed the planets in the Solar System. As the young gas giants formed, they were surrounded by discs of material that gradually coalesced into moons. While the four Galilean moons of Jupiter exist in highly regular, planet-like orbits, Titan overwhelmingly dominates Saturn's system and has a high orbital eccentricity not immediately explained by co-accretion alone. A proposed model for the formation of Titan is that Saturn's system began with a group of moons similar to Jupiter's Galilean moons, but that they were disrupted by a series of giant impacts, which would go on to form Titan. Saturn's mid-sized moons, such as Iapetus and Rhea, were formed from the debris of these collisions. Such a violent beginning would also explain Titan's orbital eccentricity. A 2014 analysis of Titan's atmospheric nitrogen suggested that it was possibly sourced from material similar to that found in the Oort cloud and not from sources present during the co-accretion of materials around Saturn.

Orbit and rotation

Main article: Moons of Saturn
Titan's orbit (highlighted in red) among the other large inner moons of Saturn. The moons outside its orbit are (from the outside to the inside) Iapetus and Hyperion; those inside are Rhea, Dione, Tethys, Enceladus, and Mimas.

Titan orbits Saturn once every 15 days and 22 hours. Like Earth's Moon and many of the satellites of the giant planets, its rotational period (its day) is identical to its orbital period; Titan is tidally locked in synchronous rotation with Saturn, and permanently shows one face to the planet. Longitudes on Titan are measured westward, starting from the meridian passing through this point. Its orbital eccentricity is 0.0288, and the orbital plane is inclined 0.348 degrees relative to the Saturnian equator.

The small and irregularly shaped satellite Hyperion is locked in a 3:4 orbital resonance with Titan—that is, Hyperion orbits three times for every four times Titan orbits. Hyperion probably formed in a stable orbital island, whereas the massive Titan absorbed or ejected any other bodies that made close approaches.

Bulk characteristics

Size comparison: Titan (lower left) with the Moon and Earth (top and right)A model of Titan's internal structure showing ice-six layer

Titan is 5,149.46 km (3,199.73 mi) in diameter; it is 6% larger than the planet Mercury and 50% larger than Earth's Moon. Titan is the tenth-largest object known in the Solar system, including the Sun. Before the arrival of Voyager 1 in 1980, Titan was thought to be slightly larger than Ganymede, which has a diameter 5,262 km (3,270 mi), and thus the largest moon in the Solar System. This was an overestimation caused by Titan's dense, opaque atmosphere, with a haze layer 100–200 km above its surface. This increases its apparent diameter. Titan's diameter and mass (and thus its density) are similar to those of the Jovian moons Ganymede and Callisto. Based on its bulk density of 1.881 g/cm, Titan's composition is 40–60% rock, with the rest being water ice and other materials.

Titan is probably partially differentiated into distinct layers with a 3,400 km (2,100 mi) rocky center. This rocky center is believed to be surrounded by several layers composed of different crystalline forms of ice, and/or water. The exact structure depends heavily on the heat flux from within Titan itself, which is poorly constrained. The interior may still be hot enough for a liquid layer consisting of a "magma" composed of water and ammonia between the ice Ih crust and deeper ice layers made of high-pressure forms of ice. The heat flow from inside Titan may even be too high for high pressure ices to form, with the outermost layers instead consisting primarily of liquid water underneath a surface crust. The presence of ammonia allows water to remain liquid even at a temperature as low as 176 K (−97 °C) (for eutectic mixture with water).

The Cassini probe discovered evidence for the layered structure in the form of natural extremely-low-frequency radio waves in Titan's atmosphere. Titan's surface is thought to be a poor reflector of extremely-low-frequency radio waves, so they may instead be reflecting off the liquid–ice boundary of a subsurface ocean. Surface features were observed by the Cassini spacecraft to systematically shift by up to 30 km (19 mi) between October 2005 and May 2007, which suggests that the crust is decoupled from the interior, and provides additional evidence for an interior liquid layer. Further supporting evidence for a liquid layer and ice shell decoupled from the solid core comes from the way the gravity field varies as Titan orbits Saturn. Comparison of the gravity field with the RADAR-based topography observations also suggests that the ice shell may be substantially rigid.

Atmosphere

Main article: Atmosphere of Titan
Vertical diagram of Titan's atmosphere

Titan is the only moon in the Solar System with an atmosphere denser than Earth's, with a surface pressure of 1.448 atm, and it is one of only two moons whose atmospheres are able to support clouds, hazes, and weather—the other being Neptune's moon Triton. The presence of a significant atmosphere was first suspected by Catalan astronomer Josep Comas i Solà, who observed distinct limb darkening on Titan in 1903. Due to the extensive, hazy atmosphere, Titan was once thought to be the largest moon in the Solar System until the Voyager missions revealed that Ganymede is slightly larger. The haze also shrouded Titan's surface from view, so direct images of its surface could not be taken until the Cassini–Huygens mission in 2004.

The primary constituents of Titan's atmosphere are nitrogen, methane, and hydrogen. The precise atmospheric composition varies depending on altitude and latitude due to methane cycling between a gas and a liquid in Titan's lower atmosphere—the methane cycle. Nitrogen is the most abundant gas, with a concentration of around 98.6% in the stratosphere that decreases to 95.1% in the troposphere. Direct observations by the Huygens probe determined that methane concentrations are highest near the surface, with a concentration of 4.92% that remains relatively constant up to 8 km (5.0 mi) above the surface. Methane concentrations then gradually decrease with increasing altitude, down to a concentration of 1.41% in the stratosphere. Methane also increases in concentration near Titan's winter pole, probably due to evaporation from the surface in high-latitude regions. Hydrogen is the third-most abundant gas, with a concentration of around 0.1%. There are trace amounts of other hydrocarbons, such as ethane, diacetylene, methylacetylene, acetylene, and propane, and other gases, such as cyanoacetylene, hydrogen cyanide, carbon dioxide, carbon monoxide, cyanogen, argon, and helium. The hydrocarbons are thought to form in Titan's upper atmosphere in reactions resulting from the breakup of methane by the Sun's ultraviolet light, producing a thick orange smog.

Energy from the Sun should have converted all traces of methane in Titan's atmosphere into more complex hydrocarbons within 50 million years—a short time compared to the age of the Solar System. This suggests that methane must be replenished by a reservoir on or within Titan itself. The ultimate origin of the methane in its atmosphere may be its interior, released via eruptions from cryovolcanoes. On April 3, 2013, NASA reported that complex organic chemicals, collectively called tholins, likely arise on Titan, based on studies simulating the atmosphere of Titan. On June 6, 2013, scientists at the IAA-CSIC reported the detection of polycyclic aromatic hydrocarbons in the upper atmosphere of Titan.

On September 30, 2013, propene was detected in the atmosphere of Titan by NASA's Cassini spacecraft, using its composite infrared spectrometer (CIRS). This is the first time propene has been found on any moon or planet other than Earth and is the first chemical found by the CIRS. The detection of propene fills a mysterious gap in observations that date back to NASA's Voyager 1 spacecraft's first close planetary flyby of Titan in 1980, during which it was discovered that many of the gases that make up Titan's brown haze were hydrocarbons, theoretically formed via the recombination of radicals created by the Sun's ultraviolet photolysis of methane.

Polar clouds, made of methane, on Titan (left) compared with polar clouds on Earth (right), which are made of water or water ice.

Climate

Main article: Climate of Titan
Atmospheric polar vortex over Titan's south pole

Titan's surface temperature is about 94 K (−179.2 °C). At this temperature, water ice has an extremely low vapor pressure, so the little water vapor present appears limited to the stratosphere. Titan receives about 1% as much sunlight as Earth. Before sunlight reaches the surface, about 90% has been absorbed by the thick atmosphere, leaving only 0.1% of the amount of light Earth receives.

Atmospheric methane creates a greenhouse effect on Titan's surface, without which Titan would be much colder. Conversely, haze in Titan's atmosphere contributes to an anti-greenhouse effect by absorbing sunlight, canceling a portion of the greenhouse effect and making its surface significantly colder than its upper atmosphere.

The Winds of Titan A recording of winds of Titan
Problems playing this file? See media help.
Methane clouds (animated; July 2014).

Titan's clouds, probably composed of methane, ethane or other simple organics, are scattered and variable, punctuating the overall haze. The findings of the Huygens probe indicate that Titan's atmosphere periodically rains liquid methane and other organic compounds onto its surface.

Clouds typically cover 1% of Titan's disk, though outburst events have been observed in which the cloud cover rapidly expands to as much as 8%. One hypothesis asserts that the southern clouds are formed when heightened levels of sunlight during the southern summer generate uplift in the atmosphere, resulting in convection. This explanation is complicated by the fact that cloud formation has been observed not only after the southern summer solstice but also during mid-spring. Increased methane humidity at the south pole possibly contributes to the rapid increases in cloud size. It was summer in Titan's southern hemisphere until 2010, when Saturn's orbit, which governs Titan's motion, moved Titan's northern hemisphere into the sunlight. When the seasons switch, it is expected that ethane will begin to condense over the south pole.

Surface features

Main article: Geology of Titan
  • Global map of Titan – with IAU labels (August 2016). Global map of Titan – with IAU labels (August 2016).
  • Titan's North Pole (2014) Titan's North Pole (2014)
  • Titan's South Pole (2014) Titan's South Pole (2014)

The surface of Titan has been described as "complex, fluid-processed, geologically young". Titan has been around since the Solar System's formation, but its surface is much younger, between 100 million and 1 billion years old. Geological processes may have reshaped Titan's surface. Titan's atmosphere is four times as thick as Earth's, making it difficult for astronomical instruments to image its surface in the visible light spectrum. The Cassini spacecraft used infrared instruments, radar altimetry and synthetic aperture radar (SAR) imaging to map portions of Titan during its close fly-bys. The first images revealed a diverse geology, with both rough and smooth areas. There are features that may be volcanic in origin, disgorging water mixed with ammonia onto the surface. There is also evidence that Titan's ice shell may be substantially rigid, which would suggest little geologic activity. There are also streaky features, some of them hundreds of kilometers in length, that appear to be caused by windblown particles. Examination has also shown the surface to be relatively smooth; the few features that seem to be impact craters appeared to have been partially filled in, perhaps by raining hydrocarbons or cryovolcanism. Radar altimetry suggests topographical variation is low, typically no more than 150 meters. Occasional elevation changes of 500 meters have been discovered and Titan has mountains that sometimes reach several hundred meters to more than one kilometer in height.

Structure of Titan's icy crust.

Titan's surface is marked by broad regions of bright and dark terrain. These include Xanadu, a large, reflective equatorial area about the size of Australia. It was first identified in infrared images from the Hubble Space Telescope in 1994, and later viewed by the Cassini spacecraft. The convoluted region is filled with hills and cut by valleys and chasms. It is criss-crossed in places by dark lineaments—sinuous topographical features resembling ridges or crevices. These may represent tectonic activity, which would indicate that Xanadu is geologically young. Alternatively, the lineaments may be liquid-formed channels, suggesting old terrain that has been cut through by stream systems. There are dark areas of similar size elsewhere on Titan, observed from the ground and by Cassini; at least one of these, Ligeia Mare, Titan's second-largest sea, is almost a pure methane sea.

Lakes and seas

Main article: Lakes of Titan
Titan's north polar region, featuring its three seas (maria)—Kraken Mare, Ligeia Mare, and Punga Mare—as well as smaller lakes (lacūs)

Following the Voyager flybys, Titan was confirmed to have an atmosphere capable of supporting liquid hydrocarbons on its surface. However, the first tentative detection only came in 1995, when data from the Hubble Space Telescope and radar observations suggested expansive hydrocarbon lakes, seas, or oceans. The existence of liquid hydrocarbons on Titan was finally confirmed in situ by the Cassini orbiter, with the Cassini mission team announcing "definitive evidence of the presence of lakes filled with liquid methane on Saturn's moon Titan" in January 2007.

The observed lakes and seas of Titan are largely restricted to its polar regions, where colder temperatures allow the presence of permanent liquid hydrocarbons. Near Titan's north pole are Kraken Mare, the largest sea; Ligeia Mare, the second-largest sea; and Punga Mare, each filling broad depressions and cumulatively representing roughly 80% of Titan's sea and lake coverage— 691,000 km² (267,000 sq mi) combined. All three maria's sea levels are similar, suggesting that they may be hydraulically connected. The southern polar region, meanwhile, hosts four dry broad depressions, potentially representing dried-up seabeds. Additional smaller lakes occupy Titan's polar regions, covering a cumulative surface area of 215,000 km² (83,000 sq mi). Lakes in Titan's lower-latitude and equatorial regions have been proposed, though none have been confirmed; seasonal or transient equatorial lakes may pool following large rainstorms. Cassini RADAR data has been used to conduct bathymetry of Titan's seas and lakes. Using detected subsurface reflections, the measured maximum depth of Ligeia Mare is roughly 200 metres (660 ft), and that of Ontario Lacus is roughly 90 metres (300 ft).

Titan's lakes and seas are dominated by methane (CH4), with smaller amounts of ethane (C2H6) and dissolved nitrogen (N2). The fraction of these components varies across different bodies: observations of Ligeia Mare are consistent with 71% CH4, 12% C2H6, and 17% N2 by volume; whilst Ontario Lacus is consistent with 49% CH4, 41% C2H6, and 10% N2 by volume. As Titan is synchronously locked with Saturn, there exists a permanent tidal bulge of roughly 100 metres (330 ft) at the sub- and anti-Saturnian points. Titan's orbital eccentricity means that tidal acceleration varies by 9%, though the long orbital period means that these tidal cycles are very gradual. A team of researchers led by Ralph D. Lorenz evaluated that the tidal range of Titan's major seas are around 0.2–0.8 metres (0.66–2.62 ft).

Tectonics and cryovolcanism

Through Cassini RADAR mapping of Titan's surface, numerous landforms have been interpreted as candidate cryovolcanic and tectonic features by multiple authors. A 2016 analysis of mountainous ridges on Titan revealed that ridges are concentrated in Titan's equatorial regions, implying that ridges either form more frequently in or are better preserved in low-latitude regions. The ridges—primarily oriented east to west—are linear to arcuate in shape, with the authors of the analysis comparing them to terrestrial fold belts indicative of horizontal compression or convergence. They note that the global distribution of Titan's ridges could be indicative of global contraction, with a thickened ice shell causing regional uplift.

The identification of cryovolcanic features on Titan remains controversial and inconclusive, primarily due to limitations of Cassini imagery and coverage. Cassini RADAR and VIMS imagery revealed several candidate cryovolcanic features, particularly flow-like terrains in western Xanadu and steep-sided lakes in the northern hemisphere that resemble maar craters on Earth, which are created by explosive subterranean eruptions. The likeliest cryovolcano features is a complex of landforms that includes two mountains, Doom Mons and Erebor Mons; a large depression, Sotra Patera; and a system of flow-like features, Mohini Fluctus. Between 2005 and 2006, parts of Sotra Patera and Mohini Fluctus became significantly brighter whilst the surrounding plains remained unchanged, potentially indicative of ongoing cryovolcanic activity. Indirect lines of evidence for cryovolcanism include the presence of Argon-40 in Titan's atmosphere. Radiogenic Ar is sourced from the decay of K, and has likely been produced within Titan over the course of billions of years within its rocky core. Ar's presence in Titan's atmosphere is thus supportive of active geology on Titan, with cryovolcanism being one possible method of bringing the isotope up from the interior.

Impact craters

Titan's surface has comparatively few impact craters, with erosion, tectonics, and cryovolcanism possibly working to erase them over time. Compared to the craters of similarly sized and structured Ganymede and Callisto, those of Titan are much shallower. Many have dark floors of sediment; geomorphological analysis of impact craters largely suggests that erosion and burial are the primary mechanisms of crater modification. Titan's craters are also not evenly distributed, as the polar regions are almost devoid of any identified craters whilst the majority are located in the equatorial dune fields. This inequality may be the result of oceans that once occupied Titan's poles, polar sediment deposition by past rainfall, or increased rates of erosion in the polar regions.

Plains and dunes

Cassini mosaic of Titan's equatorial dark regions, including the vast dune fields.

The majority of Titan's surface is covered by plains. Of the several types of plains observed, the most extensive are the Undifferentiated Plains that encompass vast, radar-dark uniform regions. These mid-latitude plains—located largely between 20 and 60° north or south—appear younger than all major geological features except dunes and several craters. The Undifferentiated Plains likely were formed by wind-driven processes and composed of organic-rich sediment.

Another extensive type of terrain on Titan are sand dunes, grouped together into vast dune fields or "sand seas" located within 30° north or south. Titanian dunes are typically 1–2 km (0.62–1.24 mi) wide and spaced 1–4 (0.62–2.49 mi) apart, with some individual dunes over 100 km (62 mi) in length. Limited radar-derived height data suggests that the dunes are 80–130 metres (260–430 ft) tall, with the dunes appearing dark in Cassini SAR imagery. Interactions between the dunes and obstacle features, such as mountains, indicate that sand is generally transported in a west-to-east direction. The sand that constructs the dunes is dominated by organic material, probably from Titan's atmosphere; possible sources of sand include river channels or the Undifferentiated Plains.

Observation and exploration

Titan is never visible to the naked eye, but can be observed through small telescopes or strong binoculars. Amateur observation is difficult because of the proximity of Titan to Saturn's brilliant globe and ring system; an occulting bar, covering part of the eyepiece and used to block the bright planet, greatly improves viewing. Titan has a maximum apparent magnitude of +8.2, and mean opposition magnitude 8.4. This compares to +4.6 for the similarly sized Ganymede, in the Jovian system.

Observations of Titan prior to the space age were limited. In 1907 Catalan astronomer Josep Comas i Solà observed limb darkening of Titan, the first evidence that the body has an atmosphere. In 1944 Gerard P. Kuiper used a spectroscopic technique to detect an atmosphere of methane.

Pioneer and Voyager

Voyager 1 view of haze on Titan's limb (1980)

The first probe to visit the Saturnian system was Pioneer 11 in 1979, which revealed that Titan was probably too cold to support life. It took images of Titan, including Titan and Saturn together in mid to late 1979. The quality was soon surpassed by the two Voyagers.

Titan was examined by both Voyager 1 and 2 in 1980 and 1981, respectively. Voyager 1's trajectory was designed to provide an optimized Titan flyby, during which the spacecraft was able to determine the density, composition, and temperature of the atmosphere, and obtain a precise measurement of Titan's mass. Atmospheric haze prevented direct imaging of the surface, though in 2004 intensive digital processing of images taken through Voyager 1's orange filter did reveal hints of the light and dark features now known as Xanadu and Shangri-la, which had been observed in the infrared by the Hubble Space Telescope. Voyager 2, which would have been diverted to perform the Titan flyby if Voyager 1 had been unable to, did not pass near Titan and continued on to Uranus and Neptune.

Cassini–Huygens

Main articles: Cassini–Huygens and Huygens (spacecraft)

The Cassini–Huygens spacecraft reached Saturn on July 1, 2004, and began the process of mapping Titan's surface by radar. A joint project of the European Space Agency (ESA) and NASA, Cassini–Huygens proved a very successful mission. The Cassini probe flew by Titan on October 26, 2004, and took the highest-resolution images ever of Titan's surface, at only 1,200 km (750 mi) , discerning patches of light and dark that would be invisible to the human eye.

On July 22, 2006, Cassini made its first targeted, close fly-by at 950 km (590 mi) from Titan; the closest flyby was at 880 km (550 mi) on June 21, 2010. Liquid has been found in abundance on the surface in the north polar region, in the form of many lakes and seas discovered by Cassini.

Huygens landing

Huygens in situ image from Titan's surface—the only image from the surface of a body permanently farther away than MarsSame image with contrast enhanced

Huygens was an atmospheric probe that touched down on Titan on January 14, 2005, discovering that many of its surface features seem to have been formed by fluids at some point in the past. Titan is the most distant body from Earth to have a space probe land on its surface.

The Huygens probe descends by parachute and lands on Titan on January 14, 2005

The Huygens probe landed just off the easternmost tip of a bright region now called Adiri. The probe photographed pale hills with dark "rivers" running down to a dark plain. Current understanding is that the hills (also referred to as highlands) are composed mainly of water ice. Dark organic compounds, created in the upper atmosphere by the ultraviolet radiation of the Sun, may rain from Titan's atmosphere. They are washed down the hills with the methane rain and are deposited on the plains over geological time scales.

After landing, Huygens photographed a dark plain covered in small rocks and pebbles, which are composed of water ice. The two rocks just below the middle of the image on the right are smaller than they may appear: the left-hand one is 15 centimeters across, and the one in the center is 4 centimeters across, at a distance of about 85 centimeters from Huygens. There is evidence of erosion at the base of the rocks, indicating possible fluvial activity. The ground surface is darker than originally expected, consisting of a mixture of water and hydrocarbon ice.

In March 2007, NASA, ESA, and COSPAR decided to name the Huygens landing site the Hubert Curien Memorial Station in memory of the former president of the ESA.

Dragonfly

Main article: Dragonfly (Titan space probe)

The Dragonfly mission, developed and operated by the Johns Hopkins Applied Physics Laboratory, is scheduled to launch in July 2028. It consists of a large drone powered by an RTG to fly in the atmosphere of Titan as New Frontiers 4. Its instruments will study how far prebiotic chemistry may have progressed. The mission is planned to arrive at Titan in the mid-2030s.

Proposed or conceptual missions

The lake lander, balloon and their orbiter proposed for the Titan Saturn System Mission (artistic rendition)

There have been several conceptual missions proposed in recent years for returning a robotic space probe to Titan. Initial conceptual work has been completed for such missions by NASA (and JPL), and ESA. At present, none of these proposals have become funded missions. The Titan Saturn System Mission (TSSM) was a joint NASA/ESA proposal for exploration of Saturn's moons. It envisions a hot-air balloon floating in Titan's atmosphere for six months. It was competing against the Europa Jupiter System Mission (EJSM) proposal for funding. In February 2009 it was announced that ESA/NASA had given the EJSM mission priority ahead of the TSSM. The proposed Titan Mare Explorer (TiME) was a low-cost lander that would splash down in Ligeia Mare in Titan's northern hemisphere. The probe would float whilst investigating Titan's hydrocarbon cycle, sea chemistry, and Titan's origins. It was selected for a Phase-A design study in 2011 as a candidate mission for the 12th NASA Discovery Program opportunity, but was not selected for flight.

Another mission to Titan proposed in early 2012 by Jason Barnes, a scientist at the University of Idaho, is the Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR): an uncrewed plane (or drone) that would fly through Titan's atmosphere and take high-definition images of the surface of Titan. NASA did not approve the requested $715 million, and the future of the project is uncertain.

A conceptual design for another lake lander was proposed in late 2012 by the Spanish-based private engineering firm SENER and the Centro de Astrobiología in Madrid. The concept probe is called Titan Lake In-situ Sampling Propelled Explorer (TALISE). The major difference compared to the TiME probe would be that TALISE is envisioned with its own propulsion system and would therefore not be limited to simply drifting on the lake when it splashes down.

A Discovery Program contestant for its mission #13 is Journey to Enceladus and Titan (JET), an astrobiology Saturn orbiter that would assess the habitability potential of Enceladus and Titan.

In 2015, the NASA Innovative Advanced Concepts program (NIAC) awarded a Phase II grant to a design study of a Titan Submarine to explore the seas of Titan.

Prebiotic conditions and life

Main article: Life on Titan See also: Planetary habitability
Profile of Titan's atmosphere compared to Earth's
Profile of Titan's atmosphere compared to Earth's

Titan is thought to be a prebiotic environment rich in complex organic compounds, but its surface is in a deep freeze at −179 °C (−290.2 °F; 94.1 K) so it is currently understood that life cannot exist on the moon's frigid surface. However, Titan seems to contain a global ocean beneath its ice shell, and within this ocean, conditions are potentially suitable for microbial life.

The Cassini–Huygens mission was not equipped to provide evidence for biosignatures or complex organic compounds; it showed an environment on Titan that is similar, in some ways, to ones hypothesized for the primordial Earth. Scientists surmise that the atmosphere of early Earth was similar in composition to the current atmosphere on Titan, with the important exception of a lack of water vapor on Titan.

Formation of complex molecules

The Miller–Urey experiment and several following experiments have shown that with an atmosphere similar to that of Titan and the addition of UV radiation, complex molecules and polymer substances like tholins can be generated. The reaction starts with dissociation of nitrogen and methane, forming hydrogen cyanide and acetylene. Further reactions have been studied extensively.

It has been reported that when energy was applied to a combination of gases like those in Titan's atmosphere, five nucleotide bases, the building blocks of DNA and RNA, were among the many compounds produced. In addition, amino acids—the building blocks of protein—were found. It was the first time nucleotide bases and amino acids had been found in such an experiment without liquid water being present.

Possible subsurface habitats

Laboratory simulations have led to the suggestion that enough organic material exists on Titan to start a chemical evolution analogous to what is thought to have started life on Earth. The analogy assumes the presence of liquid water for longer periods than is currently observable; several hypotheses postulate that liquid water from an impact could be preserved under a frozen isolation layer. It has also been hypothesized that liquid-ammonia oceans could exist deep below the surface. Another model suggests an ammonia–water solution as much as 200 km (120) deep beneath a water-ice crust with conditions that, although extreme by terrestrial standards, are such that life could survive. Heat transfer between the interior and upper layers would be critical in sustaining any subsurface oceanic life. Detection of microbial life on Titan would depend on its biogenic effects, with the atmospheric methane and nitrogen examined.

Methane and life at the surface

See also: Hypothetical types of biochemistry

It has been speculated that life could exist in the lakes of liquid methane on Titan, just as organisms on Earth live in water. Such organisms would inhale H2 in place of O2, metabolize it with acetylene instead of glucose, and exhale methane instead of carbon dioxide. However, such hypothetical organisms would be required to metabolize at a deep freeze temperature of −179.2 °C (−290.6 °F; 94.0 K).

All life forms on Earth (including methanogens) use liquid water as a solvent; it is speculated that life on Titan might instead use a liquid hydrocarbon, such as methane or ethane, although water is a stronger solvent than methane. Water is also more chemically reactive, and can break down large organic molecules through hydrolysis. A life form whose solvent was a hydrocarbon would not face the risk of its biomolecules being destroyed in this way.

In 2005, astrobiologist Chris McKay argued that if methanogenic life did exist on the surface of Titan, it would likely have a measurable effect on the mixing ratio in the Titan troposphere: levels of hydrogen and acetylene would be measurably lower than otherwise expected. Assuming metabolic rates similar to those of methanogenic organisms on Earth, the concentration of molecular hydrogen would drop by a factor of 1000 on the Titanian surface solely due to a hypothetical biological sink. McKay noted that, if life is indeed present, the low temperatures on Titan would result in very slow metabolic processes, which could conceivably be hastened by the use of catalysts similar to enzymes. He also noted that the low solubility of organic compounds in methane presents a more significant challenge to any possible form of life. Forms of active transport, and organisms with large surface-to-volume ratios could theoretically lessen the disadvantages posed by this fact.

In 2010, Darrell Strobel, from Johns Hopkins University, identified a greater abundance of molecular hydrogen in the upper atmospheric layers of Titan compared to the lower layers, arguing for a downward flow at a rate of roughly 10 molecules per second and disappearance of hydrogen near Titan's surface; as Strobel noted, his findings were in line with the effects McKay had predicted if methanogenic life-forms were present. The same year, another study showed low levels of acetylene on Titan's surface, which were interpreted by McKay as consistent with the hypothesis of organisms consuming hydrocarbons. Although restating the biological hypothesis, he cautioned that other explanations for the hydrogen and acetylene findings are more likely: the possibilities of yet unidentified physical or chemical processes (e.g. a surface catalyst accepting hydrocarbons or hydrogen), or flaws in the current models of material flow. Composition data and transport models need to be substantiated, etc. Even so, despite saying that a non-biological catalytic explanation would be less startling than a biological one, McKay noted that the discovery of a catalyst effective at 95 K (−180 °C) would still be significant. With regards to the acetylene findings, Mark Allen, the principal investigator with the NASA Astrobiology Institute Titan team, provided a speculative, non-biological explanation: sunlight or cosmic rays could transform the acetylene in icy aerosols in the atmosphere into more complex molecules that would fall to the ground with no acetylene signature.

As NASA notes in its news article on the June 2010 findings: "To date, methane-based life forms are only hypothetical. Scientists have not yet detected this form of life anywhere." As the NASA statement also says: "some scientists believe these chemical signatures bolster the argument for a primitive, exotic form of life or precursor to life on Titan's surface."

In February 2015, a hypothetical cell membrane capable of functioning in liquid methane at cryogenic temperatures (deep freeze) conditions was modeled. Composed of small molecules containing carbon, hydrogen, and nitrogen, it would have the same stability and flexibility as cell membranes on Earth, which are composed of phospholipids, compounds of carbon, hydrogen, oxygen, and phosphorus. This hypothetical cell membrane was termed an "azotosome", a combination of "azote", French for nitrogen, and "liposome".

Obstacles

Despite these biological possibilities, there are formidable obstacles to life on Titan, and any analogy to Earth is inexact. At a vast distance from the Sun, Titan is frigid, and its atmosphere lacks CO2. At Titan's surface, water exists only in solid form. Because of these difficulties, scientists such as Jonathan Lunine have viewed Titan less as a likely habitat for life than as an experiment for examining hypotheses on the conditions that prevailed prior to the appearance of life on Earth. Although life itself may not exist, the prebiotic conditions on Titan and the associated organic chemistry remain of great interest in understanding the early history of the terrestrial biosphere. Using Titan as a prebiotic experiment involves not only observation through spacecraft, but laboratory experiments, and chemical and photochemical modeling on Earth.

Panspermia hypothesis

Main article: Panspermia

It is hypothesized that large asteroid and cometary impacts on Earth's surface may have caused fragments of microbe-laden rock to escape Earth's gravity, suggesting the possibility of panspermia. Calculations indicate that these would encounter many of the bodies in the Solar System, including Titan. On the other hand, Jonathan Lunine has argued that any living things in Titan's cryogenic hydrocarbon lakes would need to be so different chemically from Earth life that it would not be possible for one to be the ancestor of the other.

Future conditions

Conditions on Titan could become far more habitable in the far future. Five billion years from now, as the Sun becomes a sub-red giant, its surface temperature could rise enough for Titan to support liquid water on its surface, making it habitable. As the Sun's ultraviolet output decreases, the haze in Titan's upper atmosphere will be depleted, lessening the anti-greenhouse effect on the surface and enabling the greenhouse created by atmospheric methane to play a far greater role. These conditions together could create a habitable environment, and could persist for several hundred million years. This is proposed to have been sufficient time for simple life to spawn on Earth, though the higher viscosity of ammonia-water solutions coupled with low temperatures would cause chemical reactions to proceed more slowly on Titan.

See also

Notes

  1. From the individual areas of Kraken Mare (5.0 · 10 km), Ligeia Mare (1.3 · 10 km), and Punga Mare (6.1 · 10 km) as provided by Hayes 2016.

References

  1. "Titan". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  2. "Cassini Equinox Mission: Huygens Landed with a Splat". JPL. January 18, 2005. Archived from the original on June 20, 2010. Retrieved May 26, 2010.
  3. Luz; et al. (2003). "Latitudinal transport by barotropic waves in Titan's stratosphere". Icarus. 166 (2): 343–358. doi:10.1016/j.icarus.2003.08.014.
  4. "Titanian". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  5. "Titanian" is the written adjectival form of both Titan and Uranus's moon Titania. However, Uranus's moon has a Shakespearean pronunciation with a short "i" vowel and the "a" of spa: /tɪˈtɑːniən/, while either spelling for Titan is pronounced with those two vowels long: /taɪˈteɪniən/.
  6. Unless otherwise specified: "JPL HORIZONS solar system data and ephemeris computation service". Solar System Dynamics. NASA, Jet Propulsion Laboratory. Archived from the original on October 7, 2012. Retrieved August 19, 2007.
  7. ^ Zebker, Howard A.; Stiles, Bryan; Hensley, Scott; Lorenz, Ralph; Kirk, Randolph L.; Lunine, Jonathan I. (May 15, 2009). "Size and Shape of Saturn's Moon Titan" (PDF). Science. 324 (5929): 921–923. Bibcode:2009Sci...324..921Z. doi:10.1126/science.1168905. PMID 19342551. S2CID 23911201. Archived from the original (PDF) on February 12, 2020.
  8. ^ Jacobson, R. A.; Antreasian, P. G.; Bordi, J. J.; Criddle, K. E.; Ionasescu, R.; Jones, J. B.; Mackenzie, R. A.; Meek, M. C.; Parcher, D.; Pelletier, F. J.; Owen, Jr., W. M.; Roth, D. C.; Roundhill, I. M.; Stauch, J. R. (December 2006). "The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data". The Astronomical Journal. 132 (6): 2520–2526. Bibcode:2006AJ....132.2520J. doi:10.1086/508812.
  9. Iess, L.; Rappaport, N. J.; Jacobson, R. A.; Racioppa, P.; Stevenson, D. J.; Tortora, P.; Armstrong, J. W.; Asmar, S. W. (March 12, 2010). "Gravity Field, Shape, and Moment of Inertia of Titan". Science. 327 (5971): 1367–1369. Bibcode:2010Sci...327.1367I. doi:10.1126/science.1182583. PMID 20223984. S2CID 44496742.
  10. Williams, D. R. (February 22, 2011). "Saturnian Satellite Fact Sheet". NASA. Archived from the original on April 30, 2010. Retrieved April 22, 2015.
  11. Li, Liming; et al. (December 2011). "The global energy balance of Titan" (PDF). Geophysical Research Letters. 38 (23). Bibcode:2011GeoRL..3823201L. doi:10.1029/2011GL050053. Retrieved August 20, 2023.
  12. Mitri, G.; Showman, Adam P.; Lunine, Jonathan I.; Lorenz, Ralph D. (2007). "Hydrocarbon Lakes on Titan" (PDF). Icarus. 186 (2): 385–394. Bibcode:2007Icar..186..385M. doi:10.1016/j.icarus.2006.09.004. Archived (PDF) from the original on February 27, 2008.
  13. ^ "Classic Satellites of the Solar System". Observatorio ARVAL. Archived from the original on July 9, 2011. Retrieved June 28, 2010.
  14. ^ Niemann, H. B.; et al. (2005). "The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe" (PDF). Nature. 438 (7069): 779–784. Bibcode:2005Natur.438..779N. doi:10.1038/nature04122. hdl:2027.42/62703. PMID 16319830. S2CID 4344046. Archived from the original on April 14, 2020. Retrieved April 17, 2018.
  15. Coustenis & Taylor (2008), pp. 154–155.
  16. Biagioli, Mario (2012). "From ciphers to confidentiality: secrecy, openness and priority in science". The British Journal for the History of Science. 45 (2). : 213–233. doi:10.1017/S0007087412000088. ISSN 0007-0874. JSTOR 23275476. PMID 23050368. Retrieved July 11, 2024.
  17. ^ "Titan: Exploration". NASA Science. July 11, 2023. Retrieved July 11, 2024.
  18. "The Satellites of Saturn". Solar System Moons. Berlin, Heidelberg: Springer Berlin Heidelberg. 2010. pp. 53–90. doi:10.1007/978-3-540-68853-2_3. ISBN 978-3-540-68852-5.
  19. "Discoverer of Titan: Christiaan Huygens". European Space Agency. September 4, 2008. Archived from the original on August 9, 2011. Retrieved April 18, 2009.
  20. Huygens, Christiaan; Société hollandaise des sciences (1888). Oeuvres complètes de Christiaan Huygens (in Latin). Vol. 1. The Hague, Netherlands: Martinus Nijhoff. pp. 387–388. Archived from the original on January 31, 2019. Retrieved January 31, 2019.
  21. Cassini, G. D. (1673). "A Discovery of two New Planets about Saturn, made in the Royal Parisian Observatory by Signor Cassini, Fellow of both the Royal Societys, of England and France; English't out of French". Philosophical Transactions. 8 (1673): 5178–5185. Bibcode:1673RSPT....8.5178C. doi:10.1098/rstl.1673.0003.
  22. ^ "Planet and Satellite Names and Discoverers". USGS. Archived from the original on November 28, 2017. Retrieved March 6, 2021.
  23. Lassell (November 12, 1847). "Observations of Mimas, the closest and most interior satellite of Saturn". Monthly Notices of the Royal Astronomical Society. 8 (3): 42–43. Bibcode:1848MNRAS...8...42L. doi:10.1093/mnras/8.3.42. Archived from the original on September 11, 2006. Retrieved March 29, 2005.
  24. Herschel, Sir John F. W. (1847). Results of astronomical observations made during the years 1834, 5, 6, 7, 8, at the Cape of Good Hope: being the completion of a telescopic survey of the whole surface of the visible heavens, commenced in 1825. London: Smith, Elder & Co. p. 415.
  25. "Overview | Saturn Moons". solarsystem.nasa.gov. NASA. Archived from the original on November 29, 2021. Retrieved March 1, 2021.
  26. "Giant impact scenario may explain the unusual moons of Saturn". Space Daily. 2012. Archived from the original on March 28, 2016. Retrieved October 19, 2012.
  27. Dyches, Preston; Clavin, Whitney (June 23, 2014). "Titan's Building Blocks Might Pre-date Saturn" (Press release). Jet Propulsion Laboratory. Archived from the original on June 27, 2014. Retrieved June 28, 2014.
  28. Hawking, Stephen; Hawking, Lucy (January 9, 2020). Unlocking the Universe. Random House. p. 127. ISBN 978-0-241-41534-4.
  29. "EVS-Islands: Titan's Unnamed Methane Sea". Archived from the original on August 9, 2011. Retrieved October 22, 2009.
  30. Darrin, Ann; O'Leary, Beth L. (June 26, 2009). Handbook of Space Engineering, Archaeology, and Heritage. CRC Press. p. 61. ISBN 978-1-4200-8432-0.
  31. Heller, René; Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Émeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I. (2014). "Formation, Habitability, and Detection of Extrasolar Moons". Astrobiology. 14 (9): 798–835. arXiv:1408.6164. Bibcode:2014AsBio..14..798H. doi:10.1089/ast.2014.1147. ISSN 1531-1074. PMC 4172466. PMID 25147963.
  32. Petrescu, Relly Victoria; Aversa, Raffaella; Apicella, Antonio; Petrescu, Florian Ion Tiberiu (January 1, 2018). "Nasa Selects Concepts for a New Mission to Titan, the Moon of Saturn". Journal of Aircraft and Spacecraft Technology. 2 (1): 40–52. doi:10.3844/jastsp.2018.40.52. ISSN 2523-1200.
  33. Bevilacqua, R.; Menchi, O.; Milani, A.; Nobili, A. M.; Farinella, P. (1980). "Resonances and close approaches. I. The Titan-Hyperion case". Earth, Moon, and Planets. 22 (2): 141–152. Bibcode:1980M&P....22..141B. doi:10.1007/BF00898423. S2CID 119442634.
  34. Lorenz, Ralph; Mitton, Jacqueline (2010). Titan Unveiled. Princeton University Press. p. 1. ISBN 978-1-4008-3475-4.
  35. ^ Seargent, David A. J. (2013). Weird Worlds. New York: Springer Science & Business Media. p. 175. ISBN 978-1-4614-7064-9.
  36. "Ganymede". Welcome to the NSSDCA. March 29, 1998. Retrieved July 27, 2024.
  37. Angelo, Joseph A. (2014). Encyclopedia of Space and Astronomy. Infobase Publishing. p. 258. ISBN 978-1-4381-1018-9.
  38. Raina, Nater Singh (2012). Contemporary Physical Geography. New Delhi: Concept Publishing Company. p. 38. ISBN 978-81-8069-761-6.
  39. ^ Arnett, Bill (2005). "Titan". Nine planets. University of Arizona, Tucson. Archived from the original on November 21, 2005. Retrieved April 10, 2005.
  40. Lunine, Jonathan I. (March 21, 2005). "Comparing the Triad of Great Moons". Astrobiology Magazine. Archived from the original on July 7, 2019. Retrieved July 20, 2006.
  41. Brown, R. H.; Lebreton, J-P; Waite, J. H., eds. (October 13, 2009). Titan from Cassini-Huygens (1st ed.). Springer Dordrecht. Bibcode:2010tfch.book...35L. doi:10.1007/978-1-4020-9215-2. ISBN 978-1-4020-9214-5.
  42. Mitri, G.; Pappalardo, R. T.; Stevenson, D. J. (December 1, 2009). "Is Titan Partially Differentiated?". AGU Fall Meeting Abstracts. 43: P43F–07. Bibcode:2009AGUFM.P43F..07M.
  43. Tobie, G.; Grasset, Olivier; Lunine, Jonathan I.; Mocquet, Antoine; Sotin, Christophe (2005). "Titan's internal structure inferred from a coupled thermal-orbital model". Icarus. 175 (2): 496–502. Bibcode:2005Icar..175..496T. doi:10.1016/j.icarus.2004.12.007.
  44. Sohl, F.; Solomonidou, A.; Wagner, F. W.; Coustenis, A.; Hussmann, H.; Schulze-Makuch, D. (May 23, 2014). "Structural and tidal models of Titan and inferences on cryovolcanism". Journal of Geophysical Research: Planets. 119 (5): 1013–1036. Bibcode:2014JGRE..119.1013S. doi:10.1002/2013JE004512.
  45. Longstaff, Alan (February 2009). "Is Titan (cryo)volcanically active?". Royal Observatory, Greenwich (Astronomy Now): 19.
  46. "Titan's Mysterious Radio Wave". ESA Cassini-Huygens web site. June 1, 2007. Archived from the original on June 5, 2011. Retrieved March 25, 2010.
  47. Shiga, David (March 20, 2008). "Titan's changing spin hints at hidden ocean". New Scientist. Archived from the original on October 21, 2014.
  48. Iess, L.; Jacobson, R. A.; Ducci, M.; Stevenson, D. J.; Lunine, Jonathan I.; Armstrong, J. W.; Asmar, S. W.; Racioppa, P.; Rappaport, N. J.; Tortora, P. (2012). "The Tides of Titan". Science. 337 (6093): 457–9. Bibcode:2012Sci...337..457I. doi:10.1126/science.1219631. hdl:11573/477190. PMID 22745254. S2CID 10966007.
  49. Zebker, H. A.; Stiles, B.; Hensley, S.; Lorenz, R.; Kirk, R. L.; Lunine, Jonathan I. (2009). "Size and Shape of Saturn's Moon Titan" (PDF). Science. 324 (5929): 921–3. Bibcode:2009Sci...324..921Z. doi:10.1126/science.1168905. PMID 19342551. S2CID 23911201. Archived from the original (PDF) on February 12, 2020.
  50. ^ Hemingway, D.; Nimmo, F.; Zebker, H.; Iess, L. (2013). "A rigid and weathered ice shell on Titan". Nature. 500 (7464): 550–2. Bibcode:2013Natur.500..550H. doi:10.1038/nature12400. hdl:11573/563592. PMID 23985871. S2CID 4428328.
  51. ^ "Cassini Data: Saturn Moon May Have Rigid Ice Shell". JPL. Archived from the original on October 20, 2014.
  52. ^ Tilman, Spohn; Breuer, Doris; Johnson, Torrence V., eds. (2014). Encyclopedia of the Solar System (3rd ed.). Elsevier. doi:10.1016/C2010-0-67309-3. ISBN 978-0-12-415845-0.
  53. Forget, F.; Bertrand, T.; Vangvichith, M.; Leconte, J.; Millour, E.; Lellouch, E. (May 2017). "A post-New Horizons Global climate model of Pluto including the N 2, CH 4 and CO cycles" (PDF). Icarus. 287: 54–71. Bibcode:2017Icar..287...54F. doi:10.1016/j.icarus.2016.11.038.
  54. Moore, P. (1990). The Atlas of the Solar System. Mitchell Beazley. ISBN 0-517-00192-6.
  55. de Selding, Petre (January 21, 2005). "Huygens Probe Sheds New Light on Titan". Space.com. Archived from the original on October 19, 2012. Retrieved March 28, 2005.
  56. ^ Brown, Robert H.; Lebreton, Jean-Pierre; Waite, J. Hunter, eds. (2010). Titan from Cassini-Huygens (1st ed.). Springer Dordrecht. Bibcode:2010tfch.book.....B. doi:10.1007/978-1-4020-9215-2. ISBN 978-94-017-8107-7.
  57. Penteado, Paulo F.; Griffith, Caitlin A. (2010). "Ground-based measurements of the methane distribution on Titan". Icarus. 210 (1): 345–351. Bibcode:2010Icar..206..345P. doi:10.1016/j.icarus.2009.08.022.
  58. ^ Ádámkovics, Máté; et al. (2016). "Meridional variation in tropospheric methane on Titan observed with AO spectroscopy at Keck and VLT". Icarus. 270: 376–388. arXiv:1509.08835. Bibcode:2016Icar..270..376A. doi:10.1016/j.icarus.2015.05.023.
  59. ^ Waite, J. H.; Cravens, T. E.; Coates, A. J.; Crary, F. J.; Magee, B.; Westlake, J. (2007). "The Process of Tholin Formation in Titan's Upper Atmosphere". Science. 316 (5826): 870–5. Bibcode:2007Sci...316..870W. doi:10.1126/science.1139727. PMID 17495166. S2CID 25984655.
  60. Coustenis, A. (2005). "Formation and evolution of Titan's atmosphere". Space Science Reviews. 116 (1–2): 171–184. Bibcode:2005SSRv..116..171C. doi:10.1007/s11214-005-1954-2. S2CID 121298964.
  61. "NASA Titan – Surface". NASA. Archived from the original on February 17, 2013. Retrieved February 14, 2013.
  62. Atreyaa, Sushil K.; Adamsa, Elena Y.; Niemann, Hasso B.; Demick-Montelar, Jaime E. a; Owen, Tobias C.; Fulchignoni, Marcello; Ferri, Francesca; Wilson, Eric H. (2006). "Titan's methane cycle". Planetary and Space Science. 54 (12): 1177–1187. Bibcode:2006P&SS...54.1177A. doi:10.1016/j.pss.2006.05.028.
  63. Stofan, E. R.; Elachi, C.; Lunine, Jonathan I.; Lorenz, R. D.; Stiles, B.; Mitchell, K. L.; Ostro, S.; Soderblom, L.; et al. (2007). "The lakes of Titan". Nature. 445 (7123): 61–64. Bibcode:2007Natur.445...61S. doi:10.1038/nature05438. PMID 17203056. S2CID 4370622.
  64. Tobie, Gabriel; Lunine, Jonathan I.; Sotin, Christophe (2006). "Episodic outgassing as the origin of atmospheric methane on Titan". Nature. 440 (7080): 61–64. Bibcode:2006Natur.440...61T. doi:10.1038/nature04497. PMID 16511489. S2CID 4335141.
  65. ^ Staff (April 3, 2013). "NASA team investigates complex chemistry at Titan". Phys.Org. Archived from the original on April 21, 2013. Retrieved April 11, 2013.
  66. López-Puertas, Manuel (June 6, 2013). "PAH's in Titan's Upper Atmosphere". CSIC. Archived from the original on December 3, 2013. Retrieved June 6, 2013.
  67. Cours, T.; Cordier, D.; Seignovert, B.; Maltagliati, L.; Biennier, L. (2020). "The 3.4μm absorption in Titan's stratosphere: Contribution of ethane, propane, butane and complex hydrogenated organics". Icarus. 339: 113571. arXiv:2001.02791. Bibcode:2020Icar..33913571C. doi:10.1016/j.icarus.2019.113571. S2CID 210116807.
  68. Brown, Dwayne; Neal-Jones, Nancy; Zubritsky, Elizabeth; Cook, Jia-Rui (September 30, 2013). "NASA's Cassini Spacecraft Finds Ingredient of Household Plastic in Space". NASA. Archived from the original on November 27, 2013. Retrieved December 2, 2013.
  69. Cottini, V.; Nixon, C.A.; Jennings, D.E.; Anderson, C.M.; Gorius, N.; Bjoraker, G.L.; Coustenis, A.; Teanby, N.A.; et al. (2012). "Water vapor in Titan's stratosphere from Cassini CIRS far-infrared spectra". Icarus. 220 (2): 855–862. Bibcode:2012Icar..220..855C. doi:10.1016/j.icarus.2012.06.014. hdl:2060/20120013575. ISSN 0019-1035. S2CID 46722419.
  70. "Titan: A World Much Like Earth". Space.com. August 6, 2009. Archived from the original on October 12, 2012. Retrieved April 2, 2012.
  71. Faint sunlight enough to drive weather, clouds on Saturn's moon Titan Archived April 3, 2017, at the Wayback Machine Between the large distance from the Sun and the thick atmosphere, Titan's surface receives about 0.1 percent of the solar energy that Earth does.
  72. "Titan Has More Oil Than Earth". Space.com. February 13, 2008. Archived from the original on July 8, 2012. Retrieved February 13, 2008.
  73. McKay, C.P.; Pollack, J. B.; Courtin, R. (1991). "The greenhouse and antigreenhouse effects on Titan" (PDF). Science. 253 (5024): 1118–1121. Bibcode:1991Sci...253.1118M. doi:10.1126/science.11538492. PMID 11538492. S2CID 10384331. Archived from the original (PDF) on April 12, 2020.
  74. Dyches, Preston (August 12, 2014). "Cassini Tracks Clouds Developing Over a Titan Sea". NASA. Archived from the original on August 13, 2014. Retrieved August 13, 2014.
  75. Lakdawalla, Emily (January 21, 2004). "Titan: Arizona in an Icebox?". The Planetary Society. Archived from the original on February 12, 2010. Retrieved March 28, 2005.
  76. Emily L., Schaller; Brouwn, Michael E.; Roe, Henry G.; Bouchez, Antonin H. (2006). "A large cloud outburst at Titan's south pole" (PDF). Icarus. 182 (1): 224–229. Bibcode:2006Icar..182..224S. doi:10.1016/j.icarus.2005.12.021. Archived (PDF) from the original on September 26, 2007. Retrieved August 23, 2007.
  77. "The Way the Wind Blows on Titan". Jet Propulsion Laboratory. June 1, 2007. Archived from the original on April 27, 2009. Retrieved June 2, 2007.
  78. Shiga, David (2006). "Huge ethane cloud discovered on Titan". New Scientist. 313: 1620. Archived from the original on December 20, 2008. Retrieved August 7, 2007.
  79. Mahaffy, Paul R. (May 13, 2005). "Intensive Titan Exploration Begins". Science. 308 (5724): 969–970. Bibcode:2005Sci...308..969M. CiteSeerX 10.1.1.668.2877. doi:10.1126/science.1113205. PMID 15890870. S2CID 41758337.
  80. ^ Chu, Jennifer (July 2012). "River networks on Titan point to a puzzling geologic history". MIT Research. Archived from the original on October 30, 2012. Retrieved July 24, 2012.
  81. "'Weird' Molecule Discovered in Titan's Atmosphere". nasa.gov. October 20, 2020. Archived from the original on July 15, 2021. Retrieved February 25, 2021.
  82. Tariq, Taimoor (March 12, 2012). "Titan, Saturn's largest moon is finally unravelled in detail". News Pakistan. Archived from the original on August 11, 2014. Retrieved March 12, 2012.
  83. Moore, J. M.; Pappalardo, R. T. (2011). "Titan: An exogenic world?". Icarus. 212 (2): 790–806. Bibcode:2011Icar..212..790M. doi:10.1016/j.icarus.2011.01.019. Archived from the original on July 26, 2021. Retrieved March 18, 2020.
  84. Battersby, Stephen (October 29, 2004). "Titan's complex and strange world revealed". New Scientist. Archived from the original on December 21, 2008. Retrieved August 31, 2007.
  85. "Spacecraft: Cassini Orbiter Instruments, RADAR". Cassini–Huygens Mission to Saturn & Titan. NASA, Jet Propulsion Laboratory. Archived from the original on August 7, 2011. Retrieved August 31, 2007.
  86. Lorenz, R. D.; et al. (2007). "Titan's Shape, Radius and Landscape from Cassini Radar Altimetry" (PDF). Lunar and Planetary Science Conference. 38 (1338): 1329. Bibcode:2007LPI....38.1329L. Archived (PDF) from the original on September 26, 2007. Retrieved August 27, 2007.
  87. "Cassini Reveals Titan's Xanadu Region To Be An Earth-Like Land". Science Daily. July 23, 2006. Archived from the original on June 29, 2011. Retrieved August 27, 2007.
  88. Barnes, Jason W.; et al. (2006). "Global-scale surface spectral variations on Titan seen from Cassini/VIMS" (PDF). Icarus. 186 (1): 242–258. Bibcode:2007Icar..186..242B. doi:10.1016/j.icarus.2006.08.021. Archived from the original (PDF) on July 25, 2011. Retrieved August 27, 2007.
  89. Klotz, Irene (April 28, 2016). "One of Titan". Discovery News. Space.com. Archived from the original on April 30, 2016. Retrieved May 1, 2016.
  90. Le Gall, A.; et al. (February 25, 2016). "Composition, seasonal change, and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission". Journal of Geophysical Research: Planets. 121 (2): 233–251. Bibcode:2016JGRE..121..233L. doi:10.1002/2015JE004920. hdl:11573/1560395. Archived from the original on August 12, 2021. Retrieved August 12, 2021.
  91. Dermott, S. F.; Sagan, C. (1995). "Tidal effects of disconnected hydrocarbon seas on Titan". Nature. 374 (6519): 238–240. Bibcode:1995Natur.374..238D. doi:10.1038/374238a0. PMID 7885443. S2CID 4317897.
  92. Stofan, E. R.; et al. (2007). "The lakes of Titan" (PDF). Nature. 445 (1): 61–64. Bibcode:2007Natur.445...61S. doi:10.1038/nature05438. PMID 17203056. S2CID 4370622.
  93. "Titan Has Liquid Lakes, Scientists Report in Nature". NASA/JPL. January 3, 2007. Archived from the original on May 23, 2013. Retrieved January 8, 2007.
  94. ^ Hayes, Alexander G. (June 2016). "The Lakes and Seas of Titan". Annual Review of Earth and Planetary Sciences. 44 (1): 57–83. Bibcode:2016AREPS..44...57H. doi:10.1146/annurev-earth-060115-012247.
  95. Lorenz, Ralph D.; et al. (July 2014). "A radar map of Titan Seas: Tidal dissipation and ocean mixing through the throat of Kraken". Icarus. 237: 9–15. Bibcode:2014Icar..237....9L. doi:10.1016/j.icarus.2014.04.005.
  96. ^ Liu, Zac Yung-Chun; et al. (May 2016). "The tectonics of Titan: Global structural mapping from Cassini RADAR". Icarus. 270: 14–29. Bibcode:2016Icar..270...14L. doi:10.1016/j.icarus.2015.11.021.
  97. ^ Lopes, R. M. C. (June 2019). "Titan as Revealed by the Cassini Radar". Space Science Reviews. 215 (4): 33. Bibcode:2019SSRv..215...33L. doi:10.1007/s11214-019-0598-6. hdl:11573/1560405.
  98. Niemann, H. B. (December 2005). "The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe". Nature. 438 (7069): 779–784. Bibcode:2005Natur.438..779N. doi:10.1038/nature04122. hdl:2027.42/62703. PMID 16319830.
  99. Hedgepeth, Joshua E.; et al. (July 2020). "Titan's impact crater population after Cassini". Icarus. 344. Bibcode:2020Icar..34413664H. doi:10.1016/j.icarus.2020.113664.
  100. ^ Lopes, Rosaly M. C.; et al. (May 2016). "Nature, distribution, and origin of Titan's Undifferentiated Plains". Icarus. 270: 162–182. Bibcode:2016Icar..270..162L. doi:10.1016/j.icarus.2015.11.034.
  101. Benton, Julius L. Jr. (2005). "Observing Saturn's Satellites". Saturn and How to Observe It. London: Springer. pp. 141–146. doi:10.1007/1-84628-045-1_9. ISBN 978-1-84628-045-0.
  102. ^ "Planetary Satellite Physical Parameters". JPL (Solar System Dynamics). April 3, 2009. Archived from the original on May 22, 2009. Retrieved June 29, 2010.
  103. Kuiper, G. P. (1944). "Titan: a Satellite with an Atmosphere". Astrophysical Journal. 100: 378. Bibcode:1944ApJ...100..378K. doi:10.1086/144679.
  104. "The Pioneer Missions". Pioneer Project. NASA, Jet Propulsion Laboratory. March 26, 2007. Archived from the original on June 29, 2011. Retrieved August 19, 2007.
  105. "40 Years Ago: Pioneer 11 First to Explore Saturn". NASA. September 3, 2019. Archived from the original on August 24, 2021. Retrieved February 22, 2020.
  106. "Voyager Camera Desc". Planetary Data System. November 21, 2021. Archived from the original on November 7, 2021. Retrieved November 21, 2021.
  107. ^ Bell, Jim (February 24, 2015). The Interstellar Age: Inside the Forty-Year Voyager Mission. Penguin Publishing Group. p. 93. ISBN 978-0-698-18615-6. Archived from the original on September 4, 2016.
  108. Richardson, J.; Lorenz, Ralph D.; McEwen, Alfred (2004). "Titan's Surface and Rotation: New Results from Voyager 1 Images". Icarus. 170 (1): 113–124. Bibcode:2004Icar..170..113R. doi:10.1016/j.icarus.2004.03.010.
  109. "Approach and Arrival at Saturn". ESA Science & Technology. June 11, 2004. Retrieved August 8, 2024.
  110. Rodriguez, S.; Crapeau, M.; Mouelic, S. Le; Paillou, Philippe; Baines, K. H. (March 11, 2007). "Cassini VIMS and Altimeter joint study of Titan surface". ResearchGate. Retrieved August 8, 2024.
  111. "Cassini-Huygens". NASA Jet Propulsion Laboratory. October 15, 1997. Retrieved August 8, 2024.
  112. "Cassini Equinox Mission: Titan Flyby (T-70) – June 21, 2010". NASA/JPL. Archived from the original on March 18, 2012. Retrieved July 8, 2010.
  113. "PIA08630: Lakes on Titan". Planetary Photojournal. NASA/JPL. Archived from the original on July 18, 2011. Retrieved October 14, 2006.
  114. Lingard, Steve; Norris, Pat (June 2005). "How To Land on Titan". Ingenia Magazine (23). Archived from the original on July 21, 2011. Retrieved January 11, 2009.
  115. "Cassini at Saturn: Introduction". NASA, Jet Propulsion Laboratory. Archived from the original on April 3, 2009. Retrieved September 6, 2007.
  116. "Huygens Exposes Titan's Surface". Space Today. Archived from the original on August 7, 2011. Retrieved August 19, 2007.
  117. ^ "Seeing, touching and smelling the extraordinarily Earth-like world of Titan". ESA News, European Space Agency. January 21, 2005. Archived from the original on October 7, 2011. Retrieved March 28, 2005.
  118. "PIA07232: First Color View of Titan's Surface". NASA/JPL/ESA/University of Arizona. January 15, 2005. Archived from the original on May 6, 2021. Retrieved February 13, 2021.
  119. "Huygens landing site to be named after Hubert Curien". ESA. March 5, 2007. Archived from the original on March 3, 2012. Retrieved August 6, 2007.
  120. Foust, Jeff (November 28, 2023). "NASA postpones Dragonfly review, launch date". SpaceNews. Retrieved November 28, 2023.
  121. Bridenstine, Jim (June 27, 2019). "New Science Mission to Explore Our Solar System". Twitter. Archived from the original on January 27, 2020. Retrieved June 27, 2019.
  122. ^ Brown, David W. (June 27, 2019). "NASA Announces New Dragonfly Drone Mission to Explore Titan – The quadcopter was selected to study the moon of Saturn after a "Shark Tank"-like competition that lasted two and a half years". The New York Times. Archived from the original on May 20, 2020. Retrieved June 27, 2019.
  123. Dragonfly: A Rotorcraft Lander Concept for Scientific Exploration at Titan. Archived December 22, 2017, at the Wayback Machine (PDF). Ralph D. Lorenz, Elizabeth P. Turtle, Jason W. Barnes, Melissa G. Trainer, Douglas S. Adams, Kenneth E. Hibbard, Colin Z. Sheldon, Kris Zacny, Patrick N. Peplowski, David J. Lawrence, Michael A. Ravine, Timothy G. McGee, Kristin S. Sotzen, Shannon M. MacKenzie, Jack W. Langelaan, Sven Schmitz, Larry S. Wolfarth, and Peter D. Bedini. Johns Hopkins APL Technical Digest, Pre-publication draft (2017).
  124. "Mission Summary: TANDEM/TSSM Titan and Enceladus Mission". ESA. 2009. Archived from the original on May 23, 2011. Retrieved January 30, 2009.
  125. Rincon, Paul (February 18, 2009). "Jupiter in space agencies' sights". BBC News. Archived from the original on October 24, 2010.
  126. Stofan, Ellen (2010). "TiME: Titan Mare Explorer" (PDF). Caltech. Archived from the original (PDF) on March 30, 2012. Retrieved August 17, 2011.
  127. "NASA Announces Three New Mission Candidates". NASA Discovery Program. May 5, 2011. Archived from the original on November 18, 2016. Retrieved June 13, 2017.
  128. "Let's go sailing on lakes of Titan!". Scientific American. November 1, 2009. Archived from the original on October 10, 2012.
  129. "AVIATR: An Airplane Mission for Titan". Universetoday.com. January 2, 2012. Archived from the original on March 28, 2013. Retrieved February 26, 2013.
  130. "Soaring on Titan: Drone designed to scout Saturn's moon". NBC News. January 10, 2012. Archived from the original on April 13, 2014. Retrieved February 26, 2013.
  131. ^ Urdampilleta, I.; Prieto-Ballesteros, O.; Rebolo, R.; Sancho, J., eds. (2012). "TALISE: Titan Lake In-situ Sampling Propelled Explorer" (PDF). European Planetary Science Congress 2012. Vol. 7, EPSC2012-64 2012. EPSC Abstracts. Archived (PDF) from the original on October 21, 2012. Retrieved October 10, 2012.
  132. Sotin, C.; Altwegg, K.; Brown, R. H.; et al. (2011). JET: Journey to Enceladus and Titan (PDF). 42nd Lunar and Planetary Science Conference. Lunar and Planetary Institute. Archived (PDF) from the original on April 15, 2015.
  133. Matousek, Steve; Sotin, Christophe; Goebel, Dan; Lang, Jared (June 18–21, 2013). JET: Journey to Enceladus and Titan (PDF). Low Cost Planetary Missions Conference. California Institute of Technology. Archived from the original (PDF) on March 4, 2016. Retrieved April 10, 2015.
  134. Hall, Loura (May 30, 2014). "Titan Submarine: Exploring the Depths of Kraken". Archived from the original on July 30, 2015.
  135. Oleson, Steven R.; Lorenz, Ralph D.; Paul, Michael V. (July 1, 2015). "Phase I Final Report: Titan Submarine". NASA. Archived from the original on July 24, 2021. Retrieved February 21, 2021.
  136. Lorenz, R. D.; Oleson, S.; Woytach, J.; Jones, R.; Colozza, A.; Schmitz, P.; Landis, G.; Paul, M.; and Walsh, J. (March 16–20, 2015). "Titan Submarine: Vehicle Design and Operations Concept for the Exploration of the Hydrocarbon Seas of Saturn's Giant Moon", 46th Lunar and Planetary Science Conference, The Woodlands, Texas. LPI Contribution No. 1832, p.1259
  137. Hartwig, J., et al., (June 24–26, 2015). "Titan Submarine: Exploring the Depths of Kraken Mare", 26th Space Cryogenics Workshop, Phoenix, Arizona. link to NASA Report Archived November 23, 2020, at the Wayback Machine. Retrieved June 13, 2017.
  138. ^ "Saturn's moon Titan may harbour simple life forms – and reveal how organisms first formed on Earth". The Conversation. July 27, 2017. Archived from the original on August 30, 2017. Retrieved August 30, 2017.
  139. ^ The Habitability of Titan and its Ocean. Archived June 3, 2021, at the Wayback Machine Keith Cooper, Astrobiology Magazine. July 12, 2019.
  140. ^ Grasset, O.; Sotin, C.; Deschamps, F. (2000). "On the internal structure and dynamic of Titan". Planetary and Space Science. 48 (7–8): 617–636. Bibcode:2000P&SS...48..617G. doi:10.1016/S0032-0633(00)00039-8.
  141. ^ Fortes, A. D. (2000). "Exobiological implications of a possible ammonia-water ocean inside Titan". Icarus. 146 (2): 444–452. Bibcode:2000Icar..146..444F. doi:10.1006/icar.2000.6400.
  142. ^ Mckay, Chris (2010). "Have We Discovered Evidence For Life On Titan". New Mexico State University, College of Arts and Sciences, Department of Astronomy. Archived from the original on March 9, 2016. Retrieved May 15, 2014.
  143. ^ Raulin, F. (2005). "Exo-astrobiological aspects of Europa and Titan: From observations to speculations". Space Science Reviews. 116 (1–2): 471–487. Bibcode:2005SSRv..116..471R. doi:10.1007/s11214-005-1967-x. S2CID 121543884.
  144. Staff (October 4, 2010). "Lakes on Saturn's Moon Titan Filled With Liquid Hydrocarbons Like Ethane and Methane, Not Water". ScienceDaily. Archived from the original on October 20, 2012. Retrieved October 5, 2010.
  145. ^ Raulin, F.; Owen, T. (2002). "Organic chemistry and exobiology on Titan". Space Science Reviews. 104 (1–2): 377–394. Bibcode:2002SSRv..104..377R. doi:10.1023/A:1023636623006. S2CID 49262430.
  146. Staff (October 8, 2010). "Titan's haze may hold ingredients for life". Astronomy. Archived from the original on September 23, 2015. Retrieved October 14, 2010.
  147. Artemivia, N.; Lunine, Jonathan I. (2003). "Cratering on Titan: impact melt, ejecta, and the fate of surface organics". Icarus. 164 (2): 471–480. Bibcode:2003Icar..164..471A. doi:10.1016/S0019-1035(03)00148-9.
  148. Lovett, Richard A. (March 20, 2008). "Saturn Moon Titan May Have Underground Ocean". National Geographic. Archived from the original on October 18, 2012.
  149. ^ McKay, C. P.; Smith, H. D. (2005). "Possibilities for methanogenic life in liquid methane on the surface of Titan". Icarus. 178 (1): 274–276. Bibcode:2005Icar..178..274M. doi:10.1016/j.icarus.2005.05.018. Archived from the original on March 9, 2021. Retrieved March 18, 2020.
  150. ^ "The Limits of Organic Life in Planetary Systems". Committee on the Limits of Organic Life in Planetary Systems, Committee on the Origins and Evolution of Life, National Research Council. The National Academies Press. 2007. p. 74. doi:10.17226/11919. ISBN 978-0-309-10484-5. Archived from the original on August 20, 2015. Retrieved February 20, 2022.
  151. ^ "What is Consuming Hydrogen and Acetylene on Titan?". NASA/JPL. 2010. Archived from the original on June 29, 2011. Retrieved June 6, 2010.
  152. Strobel, Darrell F. (2010). "Molecular hydrogen in Titan's atmosphere: Implications of the measured tropospheric and thermospheric mole fractions" (PDF). Icarus. 208 (2): 878–886. Bibcode:2010Icar..208..878S. doi:10.1016/j.icarus.2010.03.003. Archived from the original (PDF) on August 24, 2012.
  153. "Life on Titan? New clues to what's consuming hydrogen, acetylene on Saturn's moon". ScienceDaily.
  154. "Life 'not as we know it' possible on Saturn's moon Titan". Archived from the original on March 17, 2015.
  155. Stevenson, James; Lunine, Jonathan I.; Clancy, Paulette (February 27, 2015). "Membrane alternatives in worlds without oxygen: Creation of an azotosome". Science Advances. 1 (1): e1400067. Bibcode:2015SciA....1E0067S. doi:10.1126/sciadv.1400067. PMC 4644080. PMID 26601130.
  156. Bortman, Henry (August 11, 2004). "Saturn's Moon Titan: Prebiotic Laboratory—Interview with Jonathan Lunine". Astrobiology Magazine. Archived from the original on August 28, 2004. Retrieved August 11, 2004.
  157. "Earth could seed Titan with life". BBC News. March 18, 2006. Archived from the original on October 31, 2012. Retrieved March 10, 2007.
  158. Gladman, Brett; Dones, Luke; Levinson, Harold F.; Burns, Joseph A. (2005). "Impact Seeding and Reseeding in the Inner Solar System". Astrobiology. 5 (4): 483–496. Bibcode:2005AsBio...5..483G. doi:10.1089/ast.2005.5.483. PMID 16078867.
  159. Lunine, Jonathan I. (2008). "Saturn's Titan: A Strict Test for Life's Cosmic Ubiquity" (PDF). Proceedings of the American Philosophical Society. 153 (4): 403. arXiv:0908.0762. Bibcode:2009arXiv0908.0762L. Archived from the original (PDF) on May 12, 2013. copy at archive.org
  160. The National Air and Space Museum (2012). "Climate Change in the Solar System". Archived from the original on March 11, 2012. Retrieved January 14, 2012.
  161. Lorenz, Ralph D.; Lunine, Jonathan I.; McKay, Christopher P. (1997). "Titan under a red giant sun: A new kind of "habitable" moon" (PDF). Geophysical Research Letters. 24 (22): 2905–8. Bibcode:1997GeoRL..24.2905L. CiteSeerX 10.1.1.683.8827. doi:10.1029/97gl52843. PMID 11542268. S2CID 14172341. Archived (PDF) from the original on July 24, 2011. Retrieved March 21, 2008.

Bibliography

Further reading

External links

Listen to this article (56 minutes)
Spoken Misplaced Pages iconThis audio file was created from a revision of this article dated 25 October 2011 (2011-10-25), and does not reflect subsequent edits.(Audio help · More spoken articles)
Titan
Lakes
and seas
Seas
Lakes
Rivers
Dry lakes
Features
Exploration
Past
Planned and proposed
Related
Moons of Saturn
Listed in approximate increasing distance from Saturn
Ring moonlets
Ring shepherds
Other inner moons
Alkyonides
Large moons
(with trojans)
Inuit group (13)
Kiviuq subgroup
Paaliaq subgroup
Siarnaq subgroup
Gallic group (7)
Norse group (100)
Phoebe subgroup
Outlier prograde
irregular moons
  • S/2006 S 12
  • S/2004 S 24
  • Solar System
    The Sun, the planets, their moons, and several trans-Neptunian objectsThe SunMercuryVenusThe MoonEarthMarsPhobos and DeimosCeresThe main asteroid beltJupiterMoons of JupiterRings of JupiterSaturnMoons of SaturnRings of SaturnUranusMoons of UranusRings of UranusNeptuneMoons of NeptuneRings of NeptunePlutoMoons of PlutoHaumeaMoons of HaumeaMakemakeS/2015 (136472) 1The Kuiper BeltErisDysnomiaThe Scattered DiscThe Hills CloudThe Oort Cloud
    Minor
    planets
    Dwarf planets
    Asteroids
    (Small Solar
    System bodies)
    Notable asteroids
    Groups and families
    Naming
    Trans-Neptunian
    (Distant minor
    planets)
    Kuiper belt
    Scattered disc
    Other
    Comets
    Lists
    Hypothetical
    See also: Formation and evolution of the Solar System, list of the Solar System's objects by discovery date, by orbit, and by radius or mass, and the Solar System Portal
    Articles related to Titan
    Atmospheres
    Stars The violent storms of Jupiter's atmosphere
    Planets
    Dwarf planets
    Natural satellites
    Exoplanets
    See also
    Atmospheres in boldface are significant atmospheres; atmospheres in italics are unconfirmed atmospheres.
    Natural satellites of the Solar System
    Planetary
    satellites
    of


    Dwarf planet
    satellites
    of
    Minor-planet
    moons
    Near-Earth
    Florence
    Didymos
    Dimorphos
    Moshup
    Squannit
    1994 CC
    2001 SN263
    Main belt
    Kalliope
    Linus
    Euphrosyne
    Daphne
    Peneius
    Eugenia
    Petit-Prince
    Sylvia
    Romulus
    Remus
    Minerva
    Aegis
    Gorgoneion
    Camilla
    Elektra
    Kleopatra
    Alexhelios
    Cleoselene
    Ida
    Dactyl
    Roxane
    Olympias
    Pulcova
    Balam
    Dinkinesh (Selam)
    Jupiter trojans
    Patroclus
    Menoetius
    Hektor
    Skamandrios
    Eurybates
    Queta
    TNOs
    Lempo
    Hiisi
    Paha
    2002 UX25
    Sila–Nunam
    Salacia
    Actaea
    Varda
    Ilmarë
    Gǃkúnǁʼhòmdímà
    Gǃòʼé ǃHú
    2013 FY27
    Ranked
    by size
    Extraterrestrial life
    Events and objects
    Signals of interest
    Misidentified
    Stars
    Other
    Life in the Universe
    Planetary
    habitability
    Space missions
    Interstellar
    communication
    Types of alleged
    extraterrestrial beings
    Hypotheses
    Fermi paradox solutions
    Related topics
    Saturn
    Geography
    Moons
    Astronomy
    Exploration
    Related
    Portals: Categories:
    Titan (moon) Add topic