Misplaced Pages

Canalisation (genetics)

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by 67.90.197.194 (talk) at 17:02, 16 July 2007. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 17:02, 16 July 2007 by 67.90.197.194 (talk)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Norms of reaction for two genotypes. Genotype B shows a strongly bimodal distribution indicating differentiation into distinct phenotypes. Each phenotype is buffered against environmental variation - it is canalised.

Canalisation (canalization in American English) is a measure of the ability of a genotype to produce the same phenotype regardless of variability of its environment. The term canalisation was coined by C. H. Waddington, who also helped explain its developmental mechanisms. He also introduced the epigenetic landscape, in which a canalised trait is illustrated as a valley enclosed by high ridges, safely guiding the phenotype to its "fate".

A recent molecular example was given by Rutherford & Lindquist. Hsp90 is a chaperone protein, monitoring the correct folding of some polypeptides into proteins. Rutherford & Lindquist heat shocked drosophila embryos, therefore recruiting a vast proportion of cytoplasmic Hsp90 to respond to the stress. The decrease in the normal monitoring activity of Hsp90 resulted in many morphological changes in the adult flies. These changes would disappear at the next generation in the absence of the stress. One possible conclusion is that Hsp90 is buffering mutations: flies have accumulated many mutations, but their effect is suppressed by Hsp90. To test this hypothesis, they crossed flies displaying morphological changes, mimicking natural selection during big environmental changes. The resulting flies displayed morphological changes even in the absence of heat shock : the amount of accumulated mutations in these flies had overcome the buffering capacity of Hsp90 and these flies had changed their epigenetic valley.

References

  1. Rutherford SL, Lindquist S. (1998). "Hsp90 as a capacitor for morphological evolution". Nature (journal). 396: 336.

See also


The development of phenotype
Key concepts
Genetic architecture
Non-genetic influences
Developmental architecture
Evolution of genetic systems
Control of development
Systems
Elements
Influential figures
Debates
Index of evolutionary biology articles
Stub icon

This genetics article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Canalisation (genetics) Add topic