Misplaced Pages

1,2-Dichloroethane

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Addihockey10 (talk | contribs) at 04:41, 13 January 2012 (Replacing raster images with vectorized equivalents - File:1,2-dichloroethane.pngFile:1,2-dichloroethane.svg). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 04:41, 13 January 2012 by Addihockey10 (talk | contribs) (Replacing raster images with vectorized equivalents - File:1,2-dichloroethane.pngFile:1,2-dichloroethane.svg)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
1,2-Dichloroethane
1,2-Dichloroethane
1,2-Dichloroethane
1,2-Dichloroethane
1,2-Dichloroethane
Names
IUPAC name 1,2-Dichloroethane
Other names Ethylene dichloride
Ethane dichloride
Dutch liquid, Dutch oil
Freon 150
Identifiers
CAS Number
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.003.145 Edit this at Wikidata
KEGG
RTECS number
  • KI0525000
UNII
CompTox Dashboard (EPA)
SMILES
  • ClCCCl
Properties
Chemical formula C2H4Cl2
Molar mass 98.95 g·mol
Appearance Colorless liquid with
characteristic odor
Density 1.253 g/cm³, liquid
Melting point −35 °C (−31 °F; 238 K)
Boiling point 84 °C (183 °F; 357 K)
Solubility in water 0.87 g/100 mL (20 °C)
Viscosity 0.84 mPa·s at 20 °C
Structure
Dipole moment 1.80 D
Hazards
Occupational safety and health (OHS/OSH):
Main hazards Toxic, flammable, corrosive
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3 3 0
Flash point 13 °C
Related compounds
Supplementary data page
1,2-Dichloroethane (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

The chemical compound 1,2-dichloroethane, commonly known by its old name of ethylene dichloride (EDC), is a chlorinated hydrocarbon, mainly used to produce vinyl chloride monomer (VCM, chloroethene), the major precursor for PVC production. It is a colourless liquid with a chloroform-like odour. 1,2-Dichloroethane is also used generally as an intermediate for other organic chemical compounds and as a solvent. It forms azeotropes with many other solvents, including water (b.p. 70.5 C) and other chlorocarbons.

History

In 1794, physician Jan Rudolph Deiman, merchant Adriaan Paets van Troostwijk, chemist Anthoni Lauwerenburg, and botanist Nicolaas Bondt, under the name of Gezelschap der Hollandsche Scheikundigen (Template:Lang-nl), were the first to produce 1,2-dichloroethane from olefiant gas (oil-making gas, ethylene) and chlorine gas. Although the Gezelschap in practice did not do much in-depth scientific research, they and their publications were highly regarded. Part of that acknowledgement is that 1,2-dichloroethane has been called "Dutch oil" in old chemistry.

Production

Nearly 20 million tons of 1,2-dichloroethane are produced in the United States, Western Europe, and Japan. Production is primarily achieved through the iron(III) chloride-catalysed reaction of ethene (ethylene) and chlorine.

H2C=CH2 + Cl2 → ClCH2-CH2Cl

1,2-dichloroethane is also generated by the copper(II) chloride-catalysed "oxychlorination" of ethylene:

2 H2C=CH2 + 4 HCl + O2 → 2 ClCH2-CH2Cl + 2 H2O

In principle, it can be prepared by the chlorination of ethane and, less directly, from ethanol.

Uses

Vinyl chloride monomer (VCM) production

With approximately 80% of the world's consumption of 1,2-dichloroethane, the major use of 1,2-dichloroethane is in the production of vinyl chloride monomer (VCM, chloroethene) with hydrogen chloride as a byproduct. VCM is the precursor to polyvinyl chloride.

Cl-CH2-CH2-Cl → H2C=CH-Cl + HCl

The hydrogen chloride can be re-used in the production of more 1,2-dichloroethane via the oxychlorination route described above.

Other uses

As a good apolar aprotic solvent, 1,2-dichloroethane is used as degreaser and paint remover. As a useful 'building block' reagent, it is used as an intermediate in the production of various organic compounds such as ethylenediamine. In the laboratory it is occasionally used as a source of chlorine, with elimination of ethene and chloride.

Via several steps, 1,2-dichloroethane is a precursor to 1,1,1-trichloroethane, which is used in dry cleaning. Historically, 1,2-dichloroethane was used as an anti-knock additive in leaded fuels.

Safety

1,2-Dichloroethane is toxic (especially by inhalation due to its high vapour pressure), corrosive, highly flammable, and carcinogenic. Its high solubility and 50-year half-life in anoxic aquifers make it a perennial pollutant and health risk that is very expensive to treat conventionally, requiring a method of bioremediation. While the chemical is banned from use by U.S. manufacturers, a case was reported in 2009 of molded plastic consumer products (toys and holiday decorations) from China that released 1,2-dichloroethane into homes at levels high enough to produce cancer risk. Substitutes are recommended and will vary according to application. Dioxolane and toluene are possible substitutes as solvents. Dichloroethane is unstable in the presence of aluminium metal and, when moist, with zinc and iron.

References

  1. Manfred Rossberg, Wilhelm Lendle, Gerhard Pfleiderer, Adolf Tögel, Eberhard-Ludwig Dreher, Ernst Langer, Heinz Rassaerts, Peter Kleinschmidt, Heinz Strack, Richard Cook, Uwe Beck, Karl-August Lipper, Theodore R. Torkelson, Eckhard Löser, Klaus K. Beutel, Trevor Mann “Chlorinated Hydrocarbons” in Ullmann's Encyclopedia of Industrial Chemistry 2006, Wiley-VCH, Weinheim. http://dx.doi.org/10.1002/14356007.a06_233.pub2
  2. J.A. Field & R. Sierra-Alvarez (2004). "Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds". Rev. Environ. Sci. Biotechnol. 3 (3): 185–254. doi:10.1007/s11157-004-4733-8.
  3. Seyferth, D. (2003). "The Rise and Fall of Tetraethyllead. 2". Organometallics. 22 (25): 5154–5178. doi:10.1021/om030621b.
  4. "1,2-Dichoroethane MSDS." Mallinckrodt Chemicals. 19 May 2008. Web. <http://hazard.com/msds/mf/baker/baker/files/d2440.htm>.
  5. S. De Wildeman & W. Verstraete (2003). "The quest for microbial reductive dechlorination of C2 to C4 chloroalkanes is warranted". Appl. Microbiol. Biotechnol. 61 (2): 94–102. doi:10.1007/s00253-002-1174-6. PMID 12655450. {{cite journal}}: Unknown parameter |month= ignored (help)
  6. Toxic Christmas: Plastic Ornaments May Pollute Your Air
  7. Doucette, WJ and Hall, AJ and Gorder, KA (2010). "Emissions of 1, 2-Dichloroethane from Holiday Decorations as a Source of Indoor Air Contamination". Ground Water Monitoring & Remediation. 30 (1): 67–73. doi:0.1111/j.1745-6592.2009.01267.x. {{cite journal}}: Check |doi= value (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)

External links

Motor fuels
Fuel types
Fuel additives
Fluids
Retail
Categories:
1,2-Dichloroethane Add topic