This is an old revision of this page, as edited by Duoduoduo (talk | contribs) at 23:43, 18 May 2013 (delete confused commentary that should have been on talk page). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 23:43, 18 May 2013 by Duoduoduo (talk | contribs) (delete confused commentary that should have been on talk page)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)Univariate analysis is the simplest form of quantitative (statistical) analysis. The analysis is carried out with the description of a single variable in terms of the applicable unit of analysis. For example, if the variable "age" was the subject of the analysis, the researcher would look at how many subjects fall into a given age attribute categories.
Univariate analysis contrasts with bivariate analysis – the analysis of two variables simultaneously – or multivariate analysis – the analysis of multiple variables simultaneously. Univariate analysis is commonly used in the first, descriptive stages of research, before being supplemented by more advanced, inferential bivariate or multivariate analysis.
A basic way of presenting univariate data is to create a frequency distribution of the individual cases, which involves presenting the number of attributes of the variable studied for each case observed in the sample. This can be done in a table format, with a bar chart or a similar form of graphical representation. A sample distribution table and a bar chart for a univariate analysis are presented below (the table shows the frequency distribution for a variable "age" and the bar chart, for a variable "incarceration rate").
Age range | Frequency | Percent |
---|---|---|
under 18 | 10 | 5 |
18–29 | 50 | 25 |
29–45 | 40 | 20 |
45–65 | 40 | 20 |
over 65 | 60 | 30 |
Valid cases: 200 Missing cases: 0 |
There are several tools used in univariate analysis; their applicability depends on whether we are dealing with a continuous variable (such as age) or a discrete variable (such as gender).
In addition to frequency distribution, univariate analysis commonly involves reporting measures of central tendency (location). This involves describing the way in which quantitative data tend to cluster around some value. In the univariate analysis, the measure of central tendency is an average of a set of measurements, the word average being variously construed as (arithmetic) mean, median, mode or other measure of location, depending on the context.
Another set of measures used in the univariate analysis, complementing the study of the central tendency, involves studying the statistical dispersion. Those measurements look at how the values are distributed around values of central tendency. The dispersion measures most often involve studying the range, interquartile range, and the standard deviation.
See also
References
- ^ Earl R. Babbie, The Practice of Social Research", 12th edition, Wadsworth Publishing, 2009, ISBN 0-495-59841-0, p. 426-433
- Harvey Russell Bernard, Research methods in anthropology: qualitative and quantitative approaches, Rowman Altamira, 2006, ISBN 0-7591-0869-2, p. 549
- A. Cooper, Tony J. Weekes, Data, models, and statistical analysis, Rowman & Littlefield, 1983, ISBN 0-389-20383-1, pp. 50–51
- Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9, p. 61