Misplaced Pages

Ostrowski's theorem

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by Jarble (talk | contribs) at 03:24, 6 June 2013 (Proof: The source of this proof should be identified - it isn't clear at all here). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 03:24, 6 June 2013 by Jarble (talk | contribs) (Proof: The source of this proof should be identified - it isn't clear at all here)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In number theory, Ostrowski's theorem, due to Alexander Ostrowski (1916), states that every non-trivial absolute value on the rational numbers Q is equivalent to either the usual real absolute value or a p-adic absolute value.

Definitions

Two absolute values | · | and | | {\displaystyle |\cdot |_{\ast }} on a field K are defined to be equivalent if there exists a real number c > 0 such that

| x | = | x | c  for all  x K . {\displaystyle |x|_{\ast }=|x|^{c}{\text{ for all }}x\in \mathbf {K} .}

The trivial absolute value on any field K is defined to be

| x | 0 := { 0 , if  x = 0 1 , if  x 0. {\displaystyle |x|_{0}:={\begin{cases}0,&{\text{if }}x=0\\1,&{\text{if }}x\neq 0.\end{cases}}}

The real absolute value on the rationals Q is the normal absolute value on the reals, defined to be

| x | := { x , if  x 0 x , if  x < 0. {\displaystyle |x|_{\infty }:={\begin{cases}x,&{\text{if }}x\geq 0\\-x,&{\text{if }}x<0.\end{cases}}}

This is sometimes written with a subscript 1 instead of infinity.

For a prime number p, the p-adic absolute value on Q is defined as follows: any non-zero rational x, can be written uniquely as x = p n a b {\displaystyle x=p^{n}{\dfrac {a}{b}}} with a, b and p pairwise coprime and n Z {\displaystyle n\in \mathbf {Z} } some integer; so we define

| x | p := { 0 , if  x = 0 p n , if  x 0. {\displaystyle |x|_{p}:={\begin{cases}0,&{\text{if }}x=0\\p^{-n},&{\text{if }}x\neq 0.\end{cases}}}

Proof

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (Learn how and when to remove this message)

Consider a non-trivial absolute value on the rationals ( Q , | | ) {\displaystyle (\mathbf {Q} ,|\cdot |_{\ast })} . We consider two cases, (i) n N , | n | > 1 {\displaystyle \exists {n\in \mathbf {N} },|n|>1} and (ii) n N , | n | 1 {\displaystyle \forall {n\in \mathbf {N} },|n|\leq 1} . It suffices for us to consider the valuation of integers greater than one. For if we find some c R + {\displaystyle c\in \mathbf {R} ^{+}} for which | n | = | n | c {\displaystyle |n|_{\ast }=|n|_{\infty }^{c}} for all naturals greater than one; then this relation trivially holds for 0 and 1, and for positive rationals | m / n | = | m | / | n | = | m | c / | n | c = ( | m | / | n | ) c = | m / n | c {\displaystyle |m/n|_{\ast }=|m|_{\ast }/|n|_{\ast }=|m|_{\infty }^{c}/|n|_{\infty }^{c}=(|m|_{\infty }/|n|_{\infty })^{c}=|m/n|_{\infty }^{c}} ; and for negative rationals | x | = | x | = | x | c = | x | c {\displaystyle |{-}x|_{\ast }=|x|_{\ast }=|x|_{\infty }^{c}=|{-}x|_{\infty }^{c}} .

Case I: ∃nN   |n| > 1

Consider the following calculation. Let a , b N , > 1 {\displaystyle a,b\in \mathbf {N} ,>1} . Let n N , > 0 {\displaystyle n\in \mathbf {N} ,>0} . Expressing b in base a yields b n = Σ i < m c i a i {\displaystyle b^{n}=\Sigma _{i{<}m}c_{i}a^{i}} , where each c i { 0 , 1 , , a 1 } {\displaystyle c_{i}\in \{0,1,\ldots ,a-1\}} and m n log b / log a + 1 {\displaystyle m\leq n\log b/\log a+1} . Then we see, by the properties of an absolute value:

| b | n = | b n | a m max { | a | m , 1 } a ( n log a b + 1 ) max { | a | n log a b , 1 } | b | ( a ( n log a b + 1 ) ) 1 n 1  as  n max { | a | log a b , 1 } | b | max { | a | log a b , 1 } . {\displaystyle {\begin{aligned}|b|_{\ast }^{n}=|b^{n}|_{\ast }&\leq am\max\{|a|_{\ast }^{m},1\}\\&\leq a(n\log _{a}b+1)\max\{|a|_{\ast }^{n\log _{a}b},1\}\\\Rightarrow |b|_{\ast }&\leq \underbrace {{\big (}a(n\log _{a}b+1){\big )}^{\frac {1}{n}}} _{\to 1{\text{ as }}n\to \infty }\max\{|a|_{\ast }^{\log _{a}b},1\}\\\Rightarrow |b|_{\ast }&\leq \max\{|a|_{\ast }^{\log _{a}b},1\}.\end{aligned}}}

Now choose b N , > 1 {\displaystyle b\in \mathbf {N} ,>1} such that | b | > 1 {\displaystyle |b|_{\ast }>1} .Using this in the above ensures that | a | > 1 {\displaystyle |a|_{\ast }>1} regardless of the choice of a (else | a | log a b 1 {\displaystyle |a|_{\ast }^{\log _{a}b}\leq 1} implying | b | 1 {\displaystyle |b|_{\ast }\leq 1} ). Thus for any choice of a, b > 1 above, we get | b | | a | log b / log a {\displaystyle |b|_{\ast }\leq |a|_{\ast }^{\log b/\log a}} , i.e. log | b | / log b log | a | / log a {\displaystyle \log |b|_{\ast }/\log b\leq \log |a|_{\ast }/\log a} . By symmetry, this inequality is an equality.

Since a, b were arbitrary, there is a constant, λ R + {\displaystyle \lambda \in \mathbf {R} ^{+}} for which log | n | = λ log n {\displaystyle \log |n|_{\ast }=\lambda \log n} , i.e. | n | = n λ = | n | λ {\displaystyle |n|_{\ast }=n^{\lambda }=|n|_{\infty }^{\lambda }} for all naturals n > 1. As per the above remarks, we easily see that for all rationals, | x | = | x | λ {\displaystyle |x|_{\ast }=|x|_{\infty }^{\lambda }} , thus demonstrating equivalence to the real absolute value.

Case II: ∀nN   |n| ≤ 1

As this valuation is non-trivial, there must be a natural number for which | n | < 1 {\displaystyle |n|_{\ast }<1} . Factorising this natural, n = Π i < r p i e i {\displaystyle n=\Pi _{i<r}p_{i}^{e_{i}}} yields | p | {\displaystyle |p|_{\ast }} must be less than 1, for at least one of the prime factors p = pj. We claim than in fact, that this is so for only one.

Suppose per contra that p , q {\displaystyle p,q} are distinct primes with absolute value less than 1. First, let e N + {\displaystyle e\in \mathbf {N} ^{+}} be such that | p | e , | q | e < 1 / 2 {\displaystyle |p|_{\ast }^{e},|q|_{\ast }^{e}<1/2} . By the Euclidean algorithm, let m , n Z {\displaystyle m,n\in \mathbf {Z} } be integers for which m p e + n q e = 1 {\displaystyle mp^{e}+nq^{e}=1} . This yields 1 = | 1 | | m | | p | e + | n | | q | e < | m | + | n | 2 1 {\displaystyle 1=|1|_{\ast }\leq |m|_{\ast }|p|_{\ast }^{e}+|n|_{\ast }|q|_{\ast }^{e}<{\frac {|m|_{\ast }+|n|_{\ast }}{2}}\leq 1} , a contradiction.

So must have | p | = α < 1 {\displaystyle |p|_{\ast }=\alpha <1} for some prime, and | q | = 1 {\displaystyle |q|_{\ast }=1} all other primes. Letting c = log α / log p {\displaystyle c=-\log \alpha /\log p} , we see that for general positive naturals n = Π i < r p i e i {\displaystyle n=\Pi _{i<r}p_{i}^{e_{i}}} ; | n | = Π i < r | p i | e i = | p j | e j = ( p e j ) c = | n | p c {\displaystyle |n|_{\ast }=\Pi _{i<r}|p_{i}|_{\ast }^{e_{i}}=|p_{j}|_{\ast }^{e_{j}}=(p^{-e_{j}})^{c}=|n|_{p}^{c}} . As per the above remarks we see that | x | = | x | p c {\displaystyle |x|_{\ast }=|x|_{p}^{c}} all rationals, implying the absolute value is equivalent to the p-adic one.

{\displaystyle \blacksquare }

One can also show a stronger conclusion, namely that | | : Q R {\displaystyle |\cdot |_{\ast }:\mathbf {Q} \to \mathbf {R} } is a nontrivial absolute value if and only if either | | = | | c {\displaystyle |\cdot |_{\ast }=|\cdot |_{\infty }^{c}} for some c ( 0 , 1 ] {\displaystyle c\in (0,1]} or | | = | | p c {\displaystyle |\cdot |_{\ast }=|\cdot |_{p}^{c}} for some c ( 0 , ) , p P {\displaystyle c\in (0,\infty ),p\in \mathbf {P} } .

Another Ostrowski's theorem

Another theorem states that any field, complete with respect to an archimedean absolute value, is (algebraically and topologically) isomorphic to either the real numbers or the complex numbers. This is sometimes also referred to as Ostrowski's theorem.

See also

References

  1. Koblitz, Neal (1984). P-adic numbers, p-adic analysis, and zeta-functions (2nd ed. ed.). New York: Springer-Verlag. p. 3. ISBN 978-0-387-96017-3. Retrieved 24 August 2012. Theorem 1 (Ostrowski). Every nontrivial norm ‖ ‖ on ℚ is equivalent to | |p for some prime p or for p = ∞. {{cite book}}: |edition= has extra text (help)
  2. Cassels (1986) p. 33
Category:
Ostrowski's theorem Add topic