Revision as of 10:37, 18 February 2012 editBeetstra (talk | contribs)Edit filter managers, Administrators172,074 edits Saving copy of the {{chembox}} taken from revid 444058912 of page Pivalic_acid for the Chem/Drugbox validation project (updated: 'ChEMBL'). |
Latest revision as of 15:14, 17 January 2025 edit AnomieBOT (talk | contribs)Bots6,588,431 editsm Dating maintenance tags: {{Cn}} |
Line 1: |
Line 1: |
|
{{ambox | text = This page contains a copy of the infobox ({{tl|chembox}}) taken from revid of page ] with values updated to verified values.}} |
|
|
{{chembox |
|
{{chembox |
|
|
|Watchedfields = changed |
|
| verifiedrevid = 444057263 |
|
|
|
|verifiedrevid = 477511917 |
|
|ImageFileL1=Pivalic acid.svg |
|
|
|
|ImageFileL1 =Pivalic acid.svg |
|
|ImageSizeL1=100px |
|
|
|ImageFileR1=Pivalic-acid-3D-balls.png |
|
|ImageFileR1 =Pivalic-acid-3D-balls.png |
|
|
|PIN = 2,2-Dimethylpropanoic acid |
|
|ImageSizeR1=120px |
|
|
|
|OtherNames = Pivalic acid<br/>Dimethylpropanoic acid<br/>Neopentanoic acid<br/>Neovaleric acid<br/>Trimethylacetic acid |
|
|IUPACName=Dimethylpropanoic acid |
|
|
|
|Section1={{Chembox Identifiers |
|
|OtherNames=Neopentanoic acid, trimethylacetic acid |
|
|
|
|CASNo =75-98-9 |
|
|Section1= {{Chembox Identifiers |
|
|
|
|CASNo_Ref = {{cascite|correct|CAS}} |
|
| CASNo=75-98-9 |
|
|
| CASNo_Ref = {{cascite|correct|CAS}} |
|
|UNII_Ref = {{fdacite|correct|FDA}} |
|
|
|UNII = 813RE8BX41 |
|
| ChEMBL = 322719 |
|
|
|
|ChEMBL_Ref = {{ebicite|correct|EBI}} |
|
| PubChem = 6417 |
|
|
|
|ChEMBL = 322719 |
|
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} |
|
|
|
|PubChem = 6417 |
|
| ChemSpiderID = 6177 |
|
|
| ChEBI_Ref = {{ebicite|correct|EBI}} |
|
|ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} |
|
|
|ChemSpiderID = 6177 |
|
| ChEBI = 45133 |
|
|
|
|ChEBI_Ref = {{ebicite|correct|EBI}} |
|
| SMILES = O=C(O)C(C)(C)C |
|
|
|
|ChEBI = 45133 |
|
| StdInChI_Ref = {{stdinchicite|correct|chemspider}} |
|
|
|
|SMILES = O=C(O)C(C)(C)C |
|
| StdInChI = 1S/C5H10O2/c1-5(2,3)4(6)7/h1-3H3,(H,6,7) |
|
|
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} |
|
|StdInChI_Ref = {{stdinchicite|correct|chemspider}} |
|
|
|StdInChI = 1S/C5H10O2/c1-5(2,3)4(6)7/h1-3H3,(H,6,7) |
|
| StdInChIKey = IUGYQRQAERSCNH-UHFFFAOYSA-N |
|
|
|
|StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} |
|
}} |
|
|
|
|StdInChIKey = IUGYQRQAERSCNH-UHFFFAOYSA-N |
|
|Section2= {{Chembox Properties |
|
|
| Formula=C<sub>5</sub>H<sub>10</sub>O<sub>2</sub> |
|
|
| MolarMass=102.132 g/mol |
|
|
| Appearance= |
|
|
| Density= 0.905 g/cm<sup>3</sup> |
|
|
| MeltingPt= 35 °C |
|
|
| BoilingPt= 163.7 °C |
|
|
| Solubility= |
|
|
}} |
|
|
|Section3= {{Chembox Hazards |
|
|
| MainHazards= |
|
|
| FlashPt= |
|
|
| Autoignition= |
|
|
}} |
|
|
| Section4 = {{Chembox Related |
|
|
| Function = ]s |
|
|
| OtherCpds = ] <br/> ] }} |
|
|
}} |
|
}} |
|
|
|Section2={{Chembox Properties |
|
|
|C=5 |
|
|
|H=10 |
|
|
|O=2 |
|
|
|Density = 0.905 g/cm<sup>3</sup> |
|
|
|MeltingPtC = 35 |
|
|
|BoilingPtC = 163.7 |
|
|
}} |
|
|
|Section4={{Chembox Related |
|
|
|OtherFunction_label = ]s |
|
|
|OtherCompounds = ]<br/>] |
|
|
}} |
|
|
}} |
|
|
|
|
|
'''Pivalic acid''' is a ] with a molecular formula of (CH<sub>3</sub>)<sub>3</sub>CCO<sub>2</sub>H. This colourless, odiferous ] is solid at room temperature. Two abbreviations for pivalic acid are ''t''-BuC(O)OH and '''PivOH'''. The pivalyl or pivaloyl group is abbreviated ''t''-BuC(O). |
|
|
|
|
|
Pivalic acid is an ] of ], the other two isomers of it are ] and ]. |
|
|
|
|
|
==Preparation== |
|
|
Pivalic acid is prepared on a commercial scale by ] of ] via the ]: |
|
|
:(CH<sub>3</sub>)<sub>2</sub>C=CH<sub>2</sub> + CO + H<sub>2</sub>O → (CH<sub>3</sub>)<sub>3</sub>CCO<sub>2</sub>H |
|
|
Such reactions require an acid ] such as ]. ] and ] can also be used in place of isobutene. Globally, several million kilograms are produced annually.<ref>{{cite book |doi=10.1002/14356007.a05_235.pub2 |chapter=Carboxylic Acids, Aliphatic |title=Ullmann's Encyclopedia of Industrial Chemistry |date=2014 |last1=Kubitschke |first1=Jens |last2=Lange |first2=Horst |last3=Strutz |first3=Heinz |pages=1–18 |isbn=9783527306732 }}</ref> Pivalic acid is also economically recovered as a byproduct from the production of semisynthetic penicillins like ampicillin and amoxycillin. |
|
|
|
|
|
It was originally prepared by the oxidation of ] with ].<ref>{{cite journal|doi=10.1002/cber.18730060154 |title=A. Henninger, aus Paris 10. Februar 1873 |journal=Berichte der Deutschen Chemischen Gesellschaft |date=1873 |volume=6 |pages=144–147 }}</ref> Alternative oxidative route uses aqueous bromine.and by oxidation of pinacolone.<ref>{{OrgSynth |title= Trimethylacetic acid from Pinacolone |author1=S. V. Puntambeker |author2=E. W. Zoellner |volume= 8 |page= 104 |year= 1928 |doi=10.15227/orgsyn.008.0104}}</ref> |
|
|
|
|
|
:] |
|
|
The hydrolysis of ] has also been described.<ref>Butlerow, Ann. 165, 322 (1873).{{full citation needed|date=June 2017}}</ref> Another laboratory route involves carbonation of the ] formed from ]<ref>{{OrgSynth |title= Trimethylacetic acid from tert-Butyl Chloride |author1= S. V. Puntambeker |author2=E. A. Zoellner |author3=L. T. Sandborn |author4=E. W. Bousquet |collvol= 1 |collvolpages= 524 |year= 1941 |prep= cv1p0524 |doi=10.15227/orgsyn.008.0104}}</ref> |
|
|
] |
|
|
|
|
|
==Applications== |
|
|
Relative to esters of most carboxylic acids, ]s of pivalic acid are unusually resistant to hydrolysis. Some applications result from this thermal stability. Polymers derived from pivalate esters of ] are highly reflective lacquers.{{cn|date=October 2023}} |
|
|
|
|
|
==Use in the laboratory== |
|
|
Pivalic acid is sometimes used as an internal chemical shift standard for ] spectra of aqueous solutions. While ] is more commonly used for this purpose, the minor peaks from protons on the three methylene bridges in DSS can be problematic. The <sup>1</sup>H NMR spectrum at 25 °C and neutral pH is a singlet at 1.08 ppm.{{cn|date=January 2025}} |
|
|
|
|
|
Pivalic acid is employed as co-catalyst in some ]-catalyzed C-H functionalization reactions.<ref>{{Cite journal|last1=Lafrance|first1=Marc|last2=Fagnou|first2=Keith|date=2006-12-27|title=Palladium-catalyzed benzene arylation: incorporation of catalytic pivalic acid as a proton shuttle and a key element in catalyst design|url=https://www.ncbi.nlm.nih.gov/pubmed/17177387|journal=Journal of the American Chemical Society|volume=128|issue=51|pages=16496–16497|doi=10.1021/ja067144j|issn=0002-7863|pmid=17177387}}</ref><ref>{{Cite journal|last1=Zhao|first1=Dongbing|last2=Wang|first2=Weida|last3=Lian|first3=Shuang|last4=Yang|first4=Fei|last5=Lan|first5=Jingbo|last6=You|first6=Jingsong|date=2009-01-26|title=Phosphine-Free, Palladium-Catalyzed Arylation of Heterocycles through C-H Bond Activation with Pivalic Acid as a Cocatalyst|url=https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.200802001|journal=Chemistry – A European Journal|volume=15|issue=6|pages=1337–1340|doi=10.1002/chem.200802001|pmid=19115287 |issn=0947-6539|doi-access=free}}</ref> |
|
|
|
|
|
===Alcohol protection=== |
|
|
The pivaloyl (abbreviated Piv or Pv) group is a ] for ]s in ]. Common protection methods include treatment of alcohol with pivaloyl chloride (PvCl) in presence of ].<ref>{{cite journal |doi=10.1021/jo01322a026 |title=Nucleic acid related compounds. 30. Transformations of adenosine to the first 2',3'-aziridine-fused nucleosides, 9-(2,3-epimino-2,3-dideoxy-.beta.-D-ribofuranosyl)adenine and 9-(2,3-epimino-2,3-dideoxy-.beta.-D-lyxofuranosyl)adenine |journal=The Journal of Organic Chemistry |volume=44 |issue=8 |pages=1317–22 |year=1979 |last1=Robins |first1=Morris J. |last2=Hawrelak |first2=S. D. |last3=Kanai |first3=Tadashi |last4=Siefert |first4=Jan Marcus |last5=Mengel |first5=Rudolf}}</ref> |
|
|
] |
|
|
|
|
|
Alternatively, the esters can be prepared using pivaloic anhydride in the presence of Lewis acids such as ] (Sc(OTf)<sub>3</sub>). |
|
|
|
|
|
Common deprotection methods involve hydrolysis with a base or other nucleophiles.<ref>{{cite journal |doi=10.1016/S0040-4039(01)95462-0 |title=Synthesis of glucosylphosphatidylglycerol via a phosphotriester intermediate |journal=Tetrahedron Letters |volume=20 |issue=37 |pages=3561–4 |year=1979 |last1=Van Boeckel |first1=C.A.A. |last2=Van Boom |first2=J.H.}}</ref><ref>{{cite journal |doi=10.1016/0040-4020(68)88015-9 |pmid=5637486 |title=The Synthesis of oligoribonucleotides—IV |journal=Tetrahedron |volume=24 |issue=2 |pages=639–62 |year=1968 |last1=Griffin |first1=B.E. |last2=Jarman |first2=M. |last3=Reese |first3=C.B.}}</ref><ref>{{cite journal |doi=10.1016/S0040-4039(01)95650-3 |title=Use of the tert-butyldimethylsilyl group for protecting the hydroxyl functions of nucleosides |journal=Tetrahedron Letters |volume=14 |issue=4 |pages=317–9 |year=1973 |last1=Ogilvie |first1=Kelvin K. |last2=Iwacha |first2=Donald J.}}</ref><ref>{{cite journal |doi=10.1021/ja974010k |id={{INIST|10388970}}|title=Total Synthesis of Spinosyn A. 2. Degradation Studies Involving the Pure Factor and Its Complete Reconstitution |journal=Journal of the American Chemical Society |volume=120 |issue=11 |pages=2553–62 |year=1998 |last1=Paquette |first1=Leo A. |last2=Collado |first2=Iván |last3=Purdie |first3=Mark}}</ref> |
|
|
] |
|
|
|
|
|
==See also== |
|
|
*] |
|
|
|
|
|
==References== |
|
|
{{Reflist}} |
|
|
|
|
|
] |
|
|
] |