The following pages link to Lax pair
External toolsShowing 50 items.
View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)- Banach algebra (links | edit)
- C*-algebra (links | edit)
- Soliton (links | edit)
- Partial differential equation (links | edit)
- Spectral theorem (links | edit)
- Singular value decomposition (links | edit)
- Normal operator (links | edit)
- Spectrum (functional analysis) (links | edit)
- Spectral method (links | edit)
- Lattice model (physics) (links | edit)
- *-algebra (links | edit)
- Von Neumann algebra (links | edit)
- Self-adjoint (links | edit)
- Sine-Gordon equation (links | edit)
- Gelfand–Naimark theorem (links | edit)
- Korteweg–De Vries equation (links | edit)
- Topological defect (links | edit)
- Gelfand representation (links | edit)
- Isospectral (links | edit)
- Spectral radius (links | edit)
- Rigged Hilbert space (links | edit)
- Operator algebra (links | edit)
- Spectral theory (links | edit)
- Compact operator (links | edit)
- Noncommutative topology (links | edit)
- Min-max theorem (links | edit)
- Matrix model (links | edit)
- Fuglede's theorem (links | edit)
- Disk algebra (links | edit)
- Continuous functional calculus (links | edit)
- Borel functional calculus (links | edit)
- Euler's equations (rigid body dynamics) (links | edit)
- Spectrum of a C*-algebra (links | edit)
- Approximate identity (links | edit)
- Functional calculus (links | edit)
- Integrability conditions for differential systems (links | edit)
- Decomposition of spectrum (functional analysis) (links | edit)
- Projection-valued measure (links | edit)
- Martin David Kruskal (links | edit)
- Direct integral (links | edit)
- Chiral model (links | edit)
- Essential spectrum (links | edit)
- Polar decomposition (links | edit)
- Unbounded operator (links | edit)
- Nonlinear Schrödinger equation (links | edit)
- Dym equation (links | edit)
- Integrable system (links | edit)
- Fermi–Pasta–Ulam–Tsingou problem (links | edit)
- Tomita–Takesaki theory (links | edit)
- Kaup–Kupershmidt equation (links | edit)