Misplaced Pages

Flory–Schulz distribution

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Anderson–Schulz–Flory distribution)
Flory–Schulz distribution
Probability mass function
Parameters 0 < a < 1 (real)
Support k ∈ { 1, 2, 3, ... }
PMF a 2 k ( 1 a ) k 1 {\displaystyle a^{2}k(1-a)^{k-1}}
CDF 1 ( 1 a ) k ( 1 + a k ) {\displaystyle 1-(1-a)^{k}(1+ak)}
Mean 2 a 1 {\displaystyle {\frac {2}{a}}-1}
Median W ( ( 1 a ) 1 a log ( 1 a ) 2 a ) log ( 1 a ) 1 a {\displaystyle {\frac {W\left({\frac {(1-a)^{\frac {1}{a}}\log(1-a)}{2a}}\right)}{\log(1-a)}}-{\frac {1}{a}}}
Mode 1 log ( 1 a ) {\displaystyle -{\frac {1}{\log(1-a)}}}
Variance 2 2 a a 2 {\displaystyle {\frac {2-2a}{a^{2}}}}
Skewness 2 a 2 2 a {\displaystyle {\frac {2-a}{\sqrt {2-2a}}}}
Excess kurtosis ( a 6 ) a + 6 2 2 a {\displaystyle {\frac {(a-6)a+6}{2-2a}}}
MGF a 2 e t ( ( a 1 ) e t + 1 ) 2 {\displaystyle {\frac {a^{2}e^{t}}{\left((a-1)e^{t}+1\right)^{2}}}}
CF a 2 e i t ( 1 + ( a 1 ) e i t ) 2 {\displaystyle {\frac {a^{2}e^{it}}{\left(1+(a-1)e^{it}\right)^{2}}}}
PGF a 2 z ( ( a 1 ) z + 1 ) 2 {\displaystyle {\frac {a^{2}z}{((a-1)z+1)^{2}}}}

The Flory–Schulz distribution is a discrete probability distribution named after Paul Flory and Günter Victor Schulz that describes the relative ratios of polymers of different length that occur in an ideal step-growth polymerization process. The probability mass function (pmf) for the mass fraction of chains of length k {\displaystyle k} is: w a ( k ) = a 2 k ( 1 a ) k 1 . {\displaystyle w_{a}(k)=a^{2}k(1-a)^{k-1}{\text{.}}}

In this equation, k is the number of monomers in the chain, and 0<a<1 is an empirically determined constant related to the fraction of unreacted monomer remaining.

The form of this distribution implies is that shorter polymers are favored over longer ones -the chain length is geometrically distributed. Apart from polymerization processes, this distribution is also relevant to the Fischer–Tropsch process that is conceptually related, where it's known as Anderson-Schulz-Flory (ASF) distribution, in that lighter hydrocarbons are converted to heavier hydrocarbons that are desirable as a liquid fuel.

The pmf of this distribution is a solution of the following equation: { ( a 1 ) ( k + 1 ) w a ( k ) + k w a ( k + 1 ) = 0 , w a ( 0 ) = 0 , w a ( 1 ) = a 2 . } {\displaystyle \left\{{\begin{array}{l}(a-1)(k+1)w_{a}(k)+kw_{a}(k+1)=0{\text{,}}\\w_{a}(0)=0{\text{,}}w_{a}(1)=a^{2}{\text{.}}\end{array}}\right\}}

References

  1. Flory, Paul J. (October 1936). "Molecular Size Distribution in Linear Condensation Polymers". Journal of the American Chemical Society. 58 (10): 1877–1885. doi:10.1021/ja01301a016. ISSN 0002-7863.
  2. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "most probable distribution". doi:10.1351/goldbook.M04035
Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories:
Flory–Schulz distribution Add topic