Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
In mathematics, a Bailey pair is a pair of sequences satisfying certain relations, and a Bailey chain is a sequence of Bailey pairs. Bailey pairs were introduced by W. N. Bailey (1947, 1948) while studying the second proof Rogers 1917 of the Rogers–Ramanujan identities, and Bailey chains were introduced by Andrews (1984).
A pair of sequences (αn,βn) is called a Bailey pair if they are related by
or equivalently
Bailey's lemma
Bailey's lemma states that if (αn,βn) is a Bailey pair, then so is (α'n,β'n) where
In other words, given one Bailey pair, one can construct a second using the formulas above. This process can be iterated to produce an infinite sequence of Bailey pairs, called a Bailey chain.
Bailey, W. N. (1947), "Some identities in combinatory analysis", Proceedings of the London Mathematical Society, Second series, 49 (6): 421–425, doi:10.1112/plms/s2-49.6.421, ISSN0024-6115, MR0022816
Bailey, W. N. (1948), "Identities of the Rogers-Ramanujan Type", Proc. London Math. Soc., s2-50 (1): 1–10, doi:10.1112/plms/s2-50.1.1
Slater, L. J. (1952), "Further identities of the Rogers-Ramanujan type", Proceedings of the London Mathematical Society, Second series, 54 (2): 147–167, doi:10.1112/plms/s2-54.2.147, ISSN0024-6115, MR0049225