Misplaced Pages

Bellard's formula

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Mathematical formula

Bellard's formula is used to calculate the nth digit of π in base 16.

Bellard's formula was discovered by Fabrice Bellard in 1997. It is about 43% faster than the Bailey–Borwein–Plouffe formula (discovered in 1995). It has been used in PiHex, the now-completed distributed computing project.

One important application is verifying computations of all digits of pi performed by other means. Rather than having to compute all of the digits twice by two separate algorithms to ensure that a computation is correct, the final digits of a very long all-digits computation can be verified by the much faster Bellard's formula.

Formula:

π = 1 2 6 n = 0 ( 1 ) n 2 10 n ( 2 5 4 n + 1 1 4 n + 3 + 2 8 10 n + 1 2 6 10 n + 3 2 2 10 n + 5 2 2 10 n + 7 + 1 10 n + 9 ) {\displaystyle {\begin{aligned}\pi ={\frac {1}{2^{6}}}\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2^{10n}}}\,\left(-{\frac {2^{5}}{4n+1}}\right.&{}-{\frac {1}{4n+3}}+{\frac {2^{8}}{10n+1}}-{\frac {2^{6}}{10n+3}}\left.{}-{\frac {2^{2}}{10n+5}}-{\frac {2^{2}}{10n+7}}+{\frac {1}{10n+9}}\right)\end{aligned}}}

Notes

  1. "PiHex Credits". Centre for Experimental and Constructive Mathematics. Simon Fraser University. March 21, 1999. Archived from the original on 2017-06-10. Retrieved 30 March 2018.
  2. Barsky, Daniel; Muñoz, Vicente; Pérez-Marco, Ricardo (2021). "On the genesis of BBP formulas". Acta Arithmetica. 198 (4): 401–426. arXiv:1906.09629. doi:10.4064/aa200619-28-9. ISSN 0065-1036.
  3. Trueb, Peter (31 October 2016). "Hexadecimal Digits are Correct!". Archived from the original on 2016-11-16. Retrieved 2016-12-28.

External links


Stub icon

This mathematics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Bellard's formula Add topic