Misplaced Pages

β-Hydride elimination

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Beta-elimination) Not to be confused with Beta scission.
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Β-Hydride elimination" – news · newspapers · books · scholar · JSTOR (August 2012) (Learn how and when to remove this message)

β-Hydride elimination is a reaction in which a metal-alkyl centre is converted into the corresponding metal-hydride-alkene. β-Hydride elimination can also occur for many alkoxide complexes as well. The main requirements are that the alkyl group possess a C-H bond β to the metal and that the metal be coordinatively unsaturated. Thus, metal-butyl complexes are susceptible to this reaction whereas metal-methyl complexes are not. The complex must have an empty (or vacant) site cis to the alkyl group for this reaction to occur. β-Hydride elimination, which can be desirable or undesirable, affects the behavior of many organometallic complexes.

Moreover, for facile cleavage of the C–H bond, a d electron pair is needed for donation into the σ* orbital of the C–H bond. Thus, d metals alkyls are generally more stable to β-hydride elimination than d and higher metal alkyls and may form isolable agostic complexes, even if an empty coordination site is available.

Role of β-hydride elimination

The Shell higher olefin process relies on β-hydride elimination to produce α-olefins which are used to produce detergents.

β-Hydride elimination interferes with the Ziegler–Natta polymerization, leading to decreased molecular weight. The production of branched polymers from ethylene relies on chain walking, a key step of which is β-hydride elimination.

Nickel- and palladium-catalyzed couplings mainly focus on aryl-aryl couplings. Aryl-alkyl and especially alkyl-alkyl couplings are less successful because of β-hydride elimination can lower the yield.

In Hydroformylation, β-hydride elimination can act as a side reaction that influences product regioselectivity. For example, in the hydroformylation of open chain unsaturated ethers, it reverses the formation of branched metal-alkyl intermediates at high temperatures, leading to a greater yield of linear products.

β-Hydride elimination is one step in the synthesis of some metal hydrides. For instance in the synthesis of RuHCl(CO)(PPh3)3 from ruthenium trichloride, triphenylphosphine and 2-methoxyethanol, an intermediate alkoxide complex undergoes a β-hydride elimination to form the hydride ligand and the pi-bonded aldehyde which then is later converted into the carbonyl (carbon monoxide) ligand.

Mechanism

Top: the β-hydride elimination of an alkyl ligand. Bottom: the β-hydride elimination of an alkoxide ligand.

β-Hydride elimination transforms a metal-alkyl complex into an metal-hydrido-alkene complex. Starting with an unsaturated complex, the transformation proceeds in stages: 1) Dissociation of a ligand from a metal alkyl complex, yielding a coordinatively unsaturated derivative. 2) Alignment of the beta hydrogen. In this step, a vacant site on the metal forms an agostic complex by binding a C-H bond of the alkyl (or alkoxide). 3) Hydride Transfer/Alkene Formation. In this step, the M-H bond forms concomitant with cleavage of a C-H bond and the development of a double bond in what was once an alkyl (or alkoxide) ligand. The resulting metal hydride can eliminate the alkene ligand. The transition state for this β-hydride elimination involves a 4-membered ring.

Non-dissociative

Especially for Pt(II) complexes, β-hydride eliminations may occur without the dissociation of an ancillary ligand. This was suggested primarily based on the observed order of the L-type ligand in the rate law derived from kinetic studies. This mechanism appears to be operative for the minority of reactions studied.

Structure-Reactivity Relationships

Relative to an arbitrary reference complex, β-hydride elimination is faster in a complex with the following characteristics:

  • More electron-deficient metal center. This can be as a result of less donating ancillary ligands.
  • More labile ancillary ligands, such as weakly coordinating (e.g. solvent) or sterically demanding ligands.
  • The abstracted H is more hydridic (has a higher pKa).

Avoiding β-hydride elimination

Several strategies exist for avoiding β-hydride elimination. The most common strategy is to employ alkyl ligands that lack hydrogen atoms at the β position. Common substituents include methyl and neopentyl. β-Hydride elimination is also inhibited when the reaction would produce a strained alkene. This situation is illustrated by the stability of metal complexes containing norbornyl ligands, where the β-hydride elimination product would violate Bredt's rule.

Further reading

Dissociation-induced β-hydride eliminations.

β-Hydride elimination involving metal alkoxide and amido complexes.

References

  1. Elschenbroich, C. (2006). Organometallics. Weinheim: Wiley-VCH. ISBN 978-3-527-29390-2.
  2. Crabtree, Robert H. (2005). The organometallic chemistry of the transition metals (4th ed.). Hoboken, N.J.: John Wiley. p. 58. ISBN 0-471-66256-9. OCLC 61520528.
  3. Burger, Barbara J.; Thompson, Mark E.; Cotter, W. Donald; Bercaw, John E. (1990-02-01). "Ethylene insertion and .beta.-hydrogen elimination for permethylscandocene alkyl complexes. A study of the chain propagation and termination steps in Ziegler-Natta polymerization of ethylene". Journal of the American Chemical Society. 112 (4): 1566–1577. Bibcode:1990JAChS.112.1566B. doi:10.1021/ja00160a041. ISSN 0002-7863.
  4. Zhang, Baoxin; Peña Fuentes, Dilver; Börner, Armin (2022-12-02). "Hydroformylation". ChemTexts. 8 (1): 2. Bibcode:2022ChTxt...8....2Z. doi:10.1007/s40828-021-00154-x. ISSN 2199-3793.
  5. Lazzaroni, Raffaello; Settambolo, Roberta; Uccello-Barretta, Gloria (1995-10-01). ".beta.-Hydride Elimination and Regioselectivity in the Rhodium-Catalyzed Hydroformylation of Open Chain Unsaturated Ethers". Organometallics. 14 (10): 4644–4650. doi:10.1021/om00010a031. ISSN 0276-7333.
  6. Hartwig, John F. (2010). Organotransition metal chemistry: from bonding to Catalysis. Sausalito, Calif: University Science Books. ISBN 978-1-891389-53-5. OCLC 310401036.
  7. Lu, Xiyan (2005-06-01). "Control of the β-Hydride Elimination Making Palladium-Catalyzed Coupling Reactions more Diversified". Topics in Catalysis. 35 (1): 73–86. doi:10.1007/s11244-005-3814-4. ISSN 1572-9028.
  8. Spessard, Gary O.; Miessler, Gary L. (2016). Organometallic chemistry (3rd ed.). New York: Oxford University Press. ISBN 978-0-19-934267-9.
  9. ^ Theofanis, Patrick L.; Goddard, William A. III (2011-09-26). "Understanding β-Hydride Eliminations from Heteroatom Functional Groups". Organometallics. 30 (18): 4941–4948. doi:10.1021/om200542w. ISSN 0276-7333.
  10. Pudasaini, Bimal; Janesko, Benjamin G. (2012-06-25). "Computational Mechanistic Study of Stereoselective Suzuki Coupling of an α-Cyano-Activated Secondary Alkyl". Organometallics. 31 (12): 4610–4618. doi:10.1021/om300455g. ISSN 0276-7333.
  11. Nuzzo, Ralph G.; McCarthy, Thomas J.; Whitesides, George M. (June 1981). "Thermal decomposition of di(cycloalkyl)bis(triethylphosphine)platinum(II) complexes". Journal of the American Chemical Society. 103 (12): 3404–3410. Bibcode:1981JAChS.103.3404N. doi:10.1021/ja00402a026. ISSN 0002-7863.
  12. McCarthy, Thomas J.; Nuzzo, Ralph G.; Whitesides, George M. (June 1981). "Mechanisms of thermal decomposition of diethylbis(triethylphosphine)platinum(II)". Journal of the American Chemical Society. 103 (12): 3396–3403. Bibcode:1981JAChS.103.3396M. doi:10.1021/ja00402a025. ISSN 0002-7863.
  13. McDermott, Joseph X.; White, John F.; Whitesides, George M. (October 1976). "Thermal decomposition of bis(phosphine)platinum(II) metallocycles". Journal of the American Chemical Society. 98 (21): 6521–6528. Bibcode:1976JAChS..98.6521M. doi:10.1021/ja00437a018. ISSN 0002-7863.
  14. Whitesides, George M.; Gaasch, John F.; Stedronsky, Erwin R. (July 1972). "Mechanism of thermal decomposition of dibutylbis(triphenylphosphine)platinum(II)". Journal of the American Chemical Society. 94 (15): 5258–5270. Bibcode:1972JAChS..94.5258W. doi:10.1021/ja00770a021. ISSN 0002-7863.
  15. Alibrandi, Giuseppe; Monsu Scolaro, Luigi; Minniti, Domenico; Romeo, Raffaello (September 1990). "Kinetic study of .beta.-hydride elimination of monoalkyl complexes of platinum(II): effects of varying the alkyl chain length or the cis group in the reaction of cis-bis(triethylphosphine)(alkyl)(halo or pseudohalo)platinum(II) complexes". Inorganic Chemistry. 29 (18): 3467–3472. doi:10.1021/ic00343a037. ISSN 0020-1669.
  16. ^ Bogdos, Michael K.; Stepanović, Olivera; Bismuto, Alessandro; Luraschi, Mauro G.; Morandi, Bill (2022-09-12). "Mechanistically informed selection rules for competing β-hydride and β-heteroatom eliminations". Nature Synthesis. 1 (10): 787–793. Bibcode:2022NatSy...1..787B. doi:10.1038/s44160-022-00145-x. hdl:20.500.11850/578645. ISSN 2731-0582.
  17. Romeo, Raffaello; Alibrandi, Giuseppe; Scolaro, Luigi Monsu (October 1993). "Kinetic study of .beta.-hydride elimination from monoalkyl solvento complexes of platinum(II)". Inorganic Chemistry. 32 (22): 4688–4694. doi:10.1021/ic00074a008. ISSN 0020-1669.
  18. Chirik, Paul J.; Bercaw, John E. (2005-10-01). "Cyclopentadienyl and Olefin Substituent Effects on Insertion and β-Hydrogen Elimination with Group 4 Metallocenes. Kinetics, Mechanism, and Thermodynamics for Zirconocene and Hafnocene Alkyl Hydride Derivatives". Organometallics. 24 (22): 5407–5423. doi:10.1021/om0580351. ISSN 0276-7333.
  19. Burger, Barbara J.; Thompson, Mark E.; Cotter, W. Donald; Bercaw, John E. (February 1990). "Ethylene insertion and .beta.-hydrogen elimination for permethylscandocene alkyl complexes. A study of the chain propagation and termination steps in Ziegler-Natta polymerization of ethylene". Journal of the American Chemical Society. 112 (4): 1566–1577. Bibcode:1990JAChS.112.1566B. doi:10.1021/ja00160a041. ISSN 0002-7863.
  20. Bower, Barton K.; Tennent, Howard G. (1972). "Transition metal bicyclohept-1-yls". J. Am. Chem. Soc. 94 (7): 2512–2514. Bibcode:1972JAChS..94.2512B. doi:10.1021/ja00762a056.
  21. Ozawa, Fumiyuki; Ito, Takashi; Yamamoto, Akio (October 1980). "Mechanism of Thermal Decomposition of trans-Diethylbis(tertiary Phosphine)palladium(II). Steric effects of tertiary phosphine ligands on the stability of diethylpalladium complexes". Journal of the American Chemical Society. 102 (21): 6457–6463. Bibcode:1980JAChS.102.6457O. doi:10.1021/ja00541a013. ISSN 0002-7863.
  22. Lloyd-Jones, Guy C.; Slatford, Paul A. (2004-03-01). "Unusually Large Primary 2 H/H Kinetic Isotope Effects Accompanying a syn -β-H Elimination Reaction in a σ-Alkyl−Palladium Complex". Journal of the American Chemical Society. 126 (9): 2690–2691. Bibcode:2004JAChS.126.2690L. doi:10.1021/ja039349n. ISSN 0002-7863. PMID 14995172.
  23. Keinan, Ehud; Kumar, Sandeep; Dangur, Vered; Vaya, Jacob (November 1994). "Evidence for a Cyclic Mechanism in (.eta.3-Allyl)palladium Chemistry. Promotion of .beta.-Hydride Elimination by Unsaturated Organometallics". Journal of the American Chemical Society. 116 (24): 11151–11152. Bibcode:1994JAChS.11611151K. doi:10.1021/ja00103a038. ISSN 0002-7863.
  24. Alexanian, Erik J.; Hartwig, John F. (2008-11-19). "Mechanistic Study of β-Hydrogen Elimination from Organoplatinum(II) Enolate Complexes". Journal of the American Chemical Society. 130 (46): 15627–15635. Bibcode:2008JAChS.13015627A. doi:10.1021/ja8056908. ISSN 0002-7863. PMC 2819484. PMID 18954048.
  25. Cornella, Josep; Gómez-Bengoa, Enrique; Martin, Ruben (2013-02-06). "Combined Experimental and Theoretical Study on the Reductive Cleavage of Inert C–O Bonds with Silanes: Ruling out a Classical Ni(0)/Ni(II) Catalytic Couple and Evidence for Ni(I) Intermediates". Journal of the American Chemical Society. 135 (5): 1997–2009. Bibcode:2013JAChS.135.1997C. doi:10.1021/ja311940s. ISSN 0002-7863. PMID 23316793.
  26. Mueller, Jaime A.; Goller, Christopher P.; Sigman, Matthew S. (2004-08-01). "Elucidating the Significance of β-Hydride Elimination and the Dynamic Role of Acid/Base Chemistry in a Palladium-Catalyzed Aerobic Oxidation of Alcohols". Journal of the American Chemical Society. 126 (31): 9724–9734. Bibcode:2004JAChS.126.9724M. doi:10.1021/ja047794s. ISSN 0002-7863. PMC 2720309. PMID 15291576.
  27. Rauch, Michael; Luo, Jie; Avram, Liat; Ben-David, Yehoshoa; Milstein, David (2021-03-05). "Mechanistic Investigations of Ruthenium Catalyzed Dehydrogenative Thioester Synthesis and Thioester Hydrogenation". ACS Catalysis. 11 (5): 2795–2807. doi:10.1021/acscatal.1c00418. ISSN 2155-5435. PMC 7976608. PMID 33763290.
  28. Barrera, Joseph; Orth, Stephen D.; Harman, W. Dean (August 1992). ".beta.-Hydride elimination for an amine ligand and the microscopic reverse: the first report of a cis-iminium hydride in equilibrium with its amine precursor". Journal of the American Chemical Society. 114 (18): 7316–7318. Bibcode:1992JAChS.114.7316B. doi:10.1021/ja00044a065. ISSN 0002-7863.
  29. Zhao, Jing; Hesslink, Heather; Hartwig, John F. (2001-08-01). "Mechanism of β -Hydrogen Elimination from Square Planar Iridium(I) Alkoxide Complexes with Labile Dative Ligands". Journal of the American Chemical Society. 123 (30): 7220–7227. Bibcode:2001JAChS.123.7220Z. doi:10.1021/ja010417k. ISSN 0002-7863. PMID 11472149.
  30. Hartwig, John F. (1996-01-01). "Directly-Observed β-Hydrogen Elimination of a Late Transition Metal Amido Complex and Unusual Fate of Imine Byproducts". Journal of the American Chemical Society. 118 (29): 7010–7011. Bibcode:1996JAChS.118.7010H. doi:10.1021/ja961439n. ISSN 0002-7863.
Organometallic chemistry
Principles
Reactions
Types of compounds
Applications
Related branches of chemistry
Category: