Misplaced Pages

Isotopes of bohrium

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Bohrium-274)

Isotopes of bohrium (107Bh)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Bh synth 17 s α Db
Bh synth 2.4 min α Db
Bh synth 2.9 s α Db
Bh synth 8.8 s α Db
Bh synth 57 s α Db
Bh synth 11.5 min? SF

Bohrium (107Bh) is an artificial element. Like all artificial elements, it has no stable isotopes, and a standard atomic weight cannot be given. The first isotope to be synthesized was Bh in 1981. There are 11 known isotopes ranging from Bh to Bh, and 1 isomer, Bh. The longest-lived isotope is Bh with a half-life of 2.4 minutes, although the unconfirmed Bh may have an even longer half-life of about 690 seconds.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Excitation energy
Bh 107 153 260.12144(21)# 41(14) ms
α Db
Bh 107 154 261.12140(19) 12.8(3.2) ms
α Db (5/2−)
SF (rare) (various)
Bh 107 155 262.12265(10) 135+15
−12 ms
α (>94.9%) Db
β (<3.0%) Sg
SF (2.1%) (various)
Bh 220(50) keV 13.2+1.2
−1.0 ms
α Db
Bh 107 157 264.12449(19)# 1.07(21) s α (85%) Db
SF(β?) (15%) (various)
Bh 107 158 265.12496(26)# 1.19(52) s
α Db
Bh 107 159 266.12679(18)# 10.0+2.6
−1.7 s
α Db
β? Sg
Bh 107 160 267.12750(28)# 22(10) s
α Db
Bh 107 163 270.13337(32)# 2.4+4.4
−0.9 min
α Db
Bh 107 164 271.13512(41)# 2.9+2.2
−0.9 s
α Db
Bh 107 165 272.13826(57)# 8.8(7) s α Db
Bh 107 167 274.14360(62)# 57(27) s
α Db
Bh 107 171 278.15499(43)# 11.5 min? SF (various)
This table header & footer:
  1. Bh – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    SF: Spontaneous fission
  5. ( ) spin value – Indicates spin with weak assignment arguments.
  6. Not directly synthesized, occurs in decay chain of Nh
  7. Not directly synthesized, occurs in decay chain of Mc
  8. Not directly synthesized, occurs in decay chain of Mc
  9. Not directly synthesized, occurs in decay chain of Ts
  10. Not directly synthesized, occurs in decay chain of Fl and Lv; unconfirmed

Nucleosynthesis

Superheavy elements such as bohrium are produced by bombarding lighter elements in particle accelerators that induce fusion reactions. Whereas most of the isotopes of bohrium can be synthesized directly this way, some heavier ones have only been observed as decay products of elements with higher atomic numbers.

Depending on the energies involved, the former are separated into "hot" and "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50−MeV) that may either fission or evaporate several (3 to 5) neutrons. In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission. As the fused nuclei cool to the ground state, they require emission of only one or two neutrons, thus allowing for the generation of more neutron-rich products. The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (see cold fusion).

The table below contains various combinations of targets and projectiles which could be used to form compound nuclei with Z = 107.

Target Projectile CN Attempt result
Pb Mn Bh Successful reaction
Bi Cr Bh Successful reaction
Bi Cr Bh Successful reaction
U P Bh Successful reaction
Am Mg Bh Successful reaction
Cm Na Bh Successful reaction
Bk Ne Bh Successful reaction

Cold fusion

Before the first successful synthesis of hassium in 1981 by the GSI team, the synthesis of bohrium was first attempted in 1976 by scientists at the Joint Institute for Nuclear Research at Dubna using this cold fusion reaction. They detected two spontaneous fission activities, one with a half-life of 1–2 ms and one with a half-life of 5 s. Based on the results of other cold fusion reactions, they concluded that they were due to Bh and Db respectively. However, later evidence gave a much lower SF branching for Bh reducing confidence in this assignment. The assignment of the dubnium activity was later changed to Db, presuming that the decay of bohrium was missed. The 2 ms SF activity was assigned to Rf resulting from the 33% EC branch. The GSI team studied the reaction in 1981 in their discovery experiments. Five atoms of Bh were detected using the method of correlation of genetic parent-daughter decays. In 1987, an internal report from Dubna indicated that the team had been able to detect the spontaneous fission of Bh directly. The GSI team further studied the reaction in 1989 and discovered the new isotope Bh during the measurement of the 1n and 2n excitation functions but were unable to detect an SF branching for Bh. They continued their study in 2003 using newly developed bismuth(III) fluoride (BiF3) targets, used to provide further data on the decay data for Bh and the daughter Db. The 1n excitation function was remeasured in 2005 by the team at the Lawrence Berkeley National Laboratory (LBNL) after some doubt about the accuracy of previous data. They observed 18 atoms of Bh and 3 atoms of Bh and confirmed the two isomers of Bh.

In 2007, the team at LBNL studied the analogous reaction with chromium-52 projectiles for the first time to search for the lightest bohrium isotope Bh:


83Bi
+
24Cr

107Bh
+
n

The team successfully detected 8 atoms of Bh decaying by alpha decay to Db, emitting alpha particles with energy 10.16 MeV. The alpha decay energy indicates the continued stabilizing effect of the N=152 closed shell.

The team at Dubna also studied the reaction between lead-208 targets and manganese-55 projectiles in 1976 as part of their newly established cold fusion approach to new elements:


82Pb
+
25Mn

107Bh
+
n

They observed the same spontaneous fission activities as those observed in the reaction between bismuth-209 and chromium-54 and again assigned them to Bh and Db. Later evidence indicated that these should be reassigned to Db and Rf (see above). In 1983, they repeated the experiment using a new technique: measurement of alpha decay from a decay product that had been separated out chemically. The team were able to detect the alpha decay from a decay product of Bh, providing some evidence for the formation of bohrium nuclei. This reaction was later studied in detail using modern techniques by the team at LBNL. In 2005 they measured 33 decays of Bh and 2 atoms of Bh, providing an excitation function for the reaction emitting one neutron and some spectroscopic data of both Bh isomers. The excitation function for the reaction emitting two neutrons was further studied in a 2006 repeat of the reaction. The team found that the reaction emitting one neutron had a higher cross section than the corresponding reaction with a Bi target, contrary to expectations. Further research is required to understand the reasons.

Hot fusion

The reaction between uranium-238 targets and phosphorus-31 projectiles was first studied in 2006 at the LBNL as part of their systematic study of fusion reactions using uranium-238 targets:


92U
+
15P

107Bh
+ 5
n

Results have not been published but preliminary results appear to indicate the observation of spontaneous fission, possibly from Bh.

In 2004, the team at the Institute of Modern Physics (IMP), Lanzhou, have studied the nuclear reaction between americium-243 targets and accelerated nuclei of magnesium-26 in order to synthesise the new isotope Bh and gather more data on Bh:


95Am
+
12Mg

107Bh
+ x
n
(x = 3, 4, or 5)

In two series of experiments, the team measured partial excitation functions for the reactions emitting three, four, and five neutrons.

The reaction between targets of curium-248 and accelerated nuclei of sodium-23 was studied for the first time in 2008 by the team at RIKEN, Japan, in order to study the decay properties of Bh, which is a decay product in their claimed decay chains of nihonium:


96Cm
+
11Na

107Bh
+ x
n
(x = 4 or 5)

The decay of Bh by the emission of alpha particles with energies of 9.05–9.23 MeV was further confirmed in 2010.

The first attempts to synthesize bohrium by hot fusion pathways were performed in 1979 by the team at Dubna, using the reaction between accelerated nuclei of neon-22 and targets of berkelium-249:


97Bk
+
10Ne

107Bh
+ x
n
(x = 4 or 5)

The reaction was repeated in 1983. In both cases, they were unable to detect any spontaneous fission from nuclei of bohrium. More recently, hot fusions pathways to bohrium have been re-investigated in order to allow for the synthesis of more long-lived, neutron rich isotopes to allow a first chemical study of bohrium. In 1999, the team at LBNL claimed the discovery of long-lived Bh (5 atoms) and Bh (1 atom). Later, both of these were confirmed. The team at the Paul Scherrer Institute (PSI) in Bern, Switzerland later synthesized 6 atoms of Bh in the first definitive study of the chemistry of bohrium.

As decay products

List of bohrium isotopes observed by decay
Evaporation residue Observed bohrium isotope
Lv, Fl, Nh, Rg, Mt ? Bh ?
Ts, Mc, Nh, Rg, Mt Bh
Mc, Nh, Rg, Mt Bh
Mc, Nh, Rg, Mt Bh
Mc, Nh, Rg, Mt Bh
Nh, Rg, Mt Bh
Rg, Mt Bh
Mt Bh

Bohrium has been detected in the decay chains of elements with a higher atomic number, such as meitnerium. Meitnerium currently has seven isotopes that are known to undergo alpha decays to become bohrium nuclei, with mass numbers between 262 and 274. Parent meitnerium nuclei can be themselves decay products of roentgenium, nihonium, flerovium, moscovium, livermorium, or tennessine. For example, in January 2010, the Dubna team (JINR) identified bohrium-274 as a product in the decay of tennessine via an alpha decay sequence:


117Ts

115Mc
+
2He

115Mc

113Nh
+
2He

113Nh

111Rg
+
2He

111Rg

109Mt
+
2He

109Mt

107Bh
+
2He

Nuclear isomerism

Bh

The only confirmed example of isomerism in bohrium is in the isotope Bh. Direct synthesis of Bh results in two states, a ground state and an isomeric state. The ground state is confirmed to decay by alpha decay, emitting alpha particles with energies of 10.08, 9.82, and 9.76 MeV, and has a revised half-life of 84 ms. The excited state also decays by alpha decay, emitting alpha particles with energies of 10.37 and 10.24 MeV, and has a revised half-life of 9.6 ms.

Chemical yields of isotopes

Cold fusion

The table below provides cross-sections and excitation energies for cold fusion reactions producing bohrium isotopes directly. Data in bold represents maxima derived from excitation function measurements. + represents an observed exit channel.

Projectile Target CN 1n 2n 3n
Mn Pb Bh 590 pb, 14.1 MeV ~35 pb
Cr Bi Bh 510 pb, 15.8 MeV ~50 pb
Cr Bi Bh 59 pb, 15.0 MeV

Hot fusion

The table below provides cross-sections and excitation energies for hot fusion reactions producing bohrium isotopes directly. Data in bold represents maxima derived from excitation function measurements. + represents an observed exit channel.

Projectile Target CN 3n 4n 5n
Mg Am Bh + + +
Ne Bk Bh ~96 pb +

References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. FUSHE (2012). "Synthesis of SH-nuclei". Retrieved August 12, 2016.
  3. Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; Burkhard, H. G.; Dahl, L.; Eberhardt, K.; Grzywacz, R.; Hamilton, J. H.; Henderson, R. A.; Kenneally, J. M.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Miernik, K.; Miller, D.; Moody, K. J.; Morita, K.; Nishio, K.; Popeko, A. G.; Roberto, J. B.; Runke, J.; Rykaczewski, K. P.; Saro, S.; Scheidenberger, C.; Schött, H. J.; Shaughnessy, D. A.; Stoyer, M. A.; Thörle-Popiesch, P.; Tinschert, K.; Trautmann, N.; Uusitalo, J.; Yeremin, A. V. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A. 2016 (52). Bibcode:2016EPJA...52..180H. doi:10.1140/epja/i2016-16180-4.
  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. Nelson, S. L.; Gregorich, K. E.; Dragojević, I.; Garcia, M. A.; Gates, J. M.; Sudowe, R.; Nitsche, H. (14 January 2008). "Lightest Isotope of Bh Produced via the 209Bi(52Cr,n)260Bh Reaction". Physical Review Letters. 100 (2): 022501. Bibcode:2008PhRvL.100b2501N. doi:10.1103/PhysRevLett.100.022501. PMID 18232860. S2CID 1242390. Retrieved 2 July 2023.
  6. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  7. Streicher, B. (1 July 2006). "Synthesis and spectroscopic properties of transfermium isotopes with Z = 105, 106 and 107". Retrieved 2 July 2023. {{cite journal}}: Cite journal requires |journal= (help)
  8. Morita, K.; Morimoto, K.; Kaji, D.; Haba, H.; Ideguchi, E.; C. Peter, J.; Kanungo, R.; Katori, K.; Koura, H.; Kudo, H.; Ohnishi, T.; Ozawa, A.; Suda, T.; Sueki, K.; Tanihata, I.; Xu, H.; V. Yeremin, A.; Yoneda, A.; Yoshida, A.; Zhao, Y.-L.; Zheng, T.; Goto, S.; Tokanai, F. (15 July 2004). "Production and Decay Properties of 272 111 and its Daughter Nuclei". Journal of the Physical Society of Japan. 73 (7): 1738–1744. Bibcode:2004JPSJ...73.1738M. doi:10.1143/JPSJ.73.1738. ISSN 0031-9015. Retrieved 2 July 2023.
  9. Gan, Z. G.; Guo, J. S.; Wu, X. L.; Qin, Z.; Fan, H. M.; Lei, X. G.; Liu, H. Y.; Guo, B.; Xu, H. G.; Chen, R. F.; Dong, C. F.; Zhang, F. M.; Wang, H. L.; Xie, C. Y.; Feng, Z. Q.; Zhen, Y.; Song, L. T.; Luo, P.; Xu, H. S.; Zhou, X. H.; Jin, G. M.; Ren, Zhongzhou (1 June 2004). "New isotope 265Bh". The European Physical Journal A - Hadrons and Nuclei. 20 (3): 385–387. Bibcode:2004EPJA...20..385G. doi:10.1140/epja/i2004-10020-2. ISSN 1434-601X. S2CID 120622108. Retrieved 2 July 2023.
  10. Haba, H.; Fan, F.; Kaji, D.; Kasamatsu, Y.; Kikunaga, H.; Komori, Y.; Kondo, N.; Kudo, H.; Morimoto, K.; Morita, K.; Murakami, M.; Nishio, K.; Omtvedt, J. P.; Ooe, K.; Qin, Z.; Sato, D.; Sato, N.; Sato, T. K.; Shigekawa, Y.; Shinohara, A.; Takeyama, M.; Tanaka, T.; Toyoshima, A.; Tsukada, K.; Wakabayashi, Y.; Wang, Y.; Wulff, S.; Yamaki, S.; Yano, S.; Yasuda, Y.; Yokokita, T. (27 August 2020). "Production of 266Bh in the 248Cm(23Na,5n)266Bh reaction and its decay properties". Physical Review C. 102 (2): 024625. Bibcode:2020PhRvC.102b4625H. doi:10.1103/PhysRevC.102.024625. hdl:1885/270010. S2CID 225191147. Retrieved 2 July 2023.
  11. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. (2022). "New isotope Mc produced in the Am+Ca reaction". Physical Review C. 106 (64306): 064306. Bibcode:2022PhRvC.106f4306O. doi:10.1103/PhysRevC.106.064306. S2CID 254435744.
  12. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  13. ^ Armbruster, Peter & Münzenberg, Gottfried (1989). "Creating superheavy elements". Scientific American. 34: 36–42.
  14. Barber, Robert C.; Gäggeler, Heinz W.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich (2009). "Discovery of the element with atomic number 112 (IUPAC Technical Report)". Pure and Applied Chemistry. 81 (7): 1331. doi:10.1351/PAC-REP-08-03-05.
  15. Fleischmann, Martin; Pons, Stanley (1989). "Electrochemically induced nuclear fusion of deuterium". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 261 (2): 301–308. doi:10.1016/0022-0728(89)80006-3.
  16. ^ Münzenberg, G.; Hofmann, S.; Heßberger, F.P.; Reisdorf, W.; Schmidt, K.H.; Schneider, J.H.R.; Armbruster, P.; Sahm, C.C.; Thuma, B. (1981). "Identification of element 107 by α correlation chains" (PDF). Zeitschrift für Physik A. 300 (1): 107–8. Bibcode:1981ZPhyA.300..107M. doi:10.1007/BF01412623. S2CID 118312056. Archived from the original (PDF) on 2012-07-12. Retrieved 19 November 2012.
  17. Münzenberg, G.; Armbruster, P.; Hofmann, S.; Heßberger, F. P.; Folger, H.; Keller, J. G.; Ninov, V.; Poppensieker, K.; et al. (1989). "Element 107". Zeitschrift für Physik A. 333 (2): 163–175. Bibcode:1989ZPhyA.333..163M. doi:10.1007/BF01565147. S2CID 186231905.
  18. "Entrance Channel Effects in the Production of Bh", Nelson et al., LBNL repositories 2005. Retrieved 2008-03-04
  19. Nelson, S.; Gregorich, K.; Dragojević, I.; Garcia, M.; Gates, J.; Sudowe, R.; Nitsche, H. (2008). "Lightest Isotope of Bh Produced via the Bi209(Cr52,n)Bh260 Reaction". Physical Review Letters. 100 (2): 22501. Bibcode:2008PhRvL.100b2501N. doi:10.1103/PhysRevLett.100.022501. PMID 18232860. S2CID 1242390.
  20. Folden Iii, C. M.; Nelson; Düllmann; Schwantes; Sudowe; Zielinski; Gregorich; Nitsche; Hoffman (2006). "Excitation function for the production of Bh (Z=107) in the odd-Z-projectile reaction Pb(Mn, n)". Physical Review C. 73 (1): 014611. Bibcode:2006PhRvC..73a4611F. doi:10.1103/PhysRevC.73.014611. S2CID 73712859.
  21. "Excitation function for the production of Bh (Z=107) in the odd-Z-projectile reaction Pb(Mn, n)", Folden et al., LBNL repositories, May 19, 2005. Retrieved on 2008-02-29
  22. Hot fusion studies at the BGS with light projectiles and 238U targets Archived 2011-07-19 at the Wayback Machine, J. M. Gates
  23. Gan, Z. G.; Guo, J. S.; Wu, X. L.; Qin, Z.; Fan, H. M.; Lei, X.G.; Liu, H.Y.; Guo, B.; et al. (2004). "New isotope Bh". The European Physical Journal A. 20 (3): 385–387. Bibcode:2004EPJA...20..385G. doi:10.1140/epja/i2004-10020-2. S2CID 120622108.
  24. Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sato, Nozomi; Sumita, Takayuki; Yoneda, Akira; Ichikawa, Takatoshi; Fujimori, Yasuyuki; Goto, Sin-Ichi; Ideguchi, Eiji; Kasamatsu, Yoshitaka; Katori, Kenji; Komori, Yukiko; Koura, Hiroyuki; Kudo, Hisaaki; Ooe, Kazuhiro; Ozawa, Akira; Tokanai, Fuyuki; Tsukada, Kazuaki; Yamaguchi, Takayuki; Yoshida, Atsushi; et al. (2009). "Decay Properties of Bh and Db Produced in the Cm + Na Reaction". Journal of the Physical Society of Japan. 78 (6): 064201. arXiv:0904.1093. Bibcode:2009JPSJ...78f4201M. doi:10.1143/JPSJ.78.064201. S2CID 16415500.
  25. Morita, K.; Morimoto, K.; Kaji, D.; Haba, H.; Ozeki, K.; Kudou, Y.; Sato, N.; Sumita, T.; Yoneda, A.; Ichikawa, T.; Fujimori, Y.; Goto, S.; Ideguchi, E.; Kasamatsu, Y.; Katori, K.; Komori, Y.; Koura, H.; Kudo, H.; Ooe, K.; Ozawa, A.; Tokanai, F.; Tsukada, K.; Yamaguchi, T.; Yoshida, A.; Susa, Hajime; Arnould, Marcel; Gales, Sydney; Motobayashi, Tohru; Scheidenberger, Christoph; Utsunomiya, Hiroaki (2010). "Decay Properties of Bh and Db Produced in the Cm+Na Reaction—Further Confirmation of the 113 Decay Chain—". AIP Conference Proceedings: 331–336. doi:10.1063/1.3455961. {{cite journal}}: Cite journal requires |journal= (help)
  26. Wilk, P. A.; Gregorich, KE; Turler, A; Laue, CA; Eichler, R; Ninov V, V; Adams, JL; Kirbach, UW; et al. (2000). "Evidence for New Isotopes of Element 107: Bh and Bh". Physical Review Letters. 85 (13): 2697–700. Bibcode:2000PhRvL..85.2697W. doi:10.1103/PhysRevLett.85.2697. PMID 10991211.
  27. Münzenberg, G.; Gupta, M. (2011). "Production and Identification of Transactinide Elements". Handbook of Nuclear Chemistry. pp. 877–923. doi:10.1007/978-1-4419-0720-2_19. ISBN 978-1-4419-0719-6.
  28. "Gas chemical investigation of bohrium (Bh, element 107)" Archived 2008-02-28 at the Wayback Machine, Eichler et al., GSI Annual Report 2000. Retrieved on 2008-02-29
  29. ^ Oganessian, Yuri Ts.; Abdullin, F. Sh.; Bailey, P. D.; et al. (2010-04-09). "Synthesis of a New Element with Atomic Number Z=117". Physical Review Letters. 104 (142502). American Physical Society: 142502. Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935.
  30. ^ Oganessian, Yu. Ts.; Penionzhkevich, Yu. E.; Cherepanov, E. A. (2007). "Heaviest Nuclei Produced in 48Ca-induced Reactions (Synthesis and Decay Properties)". AIP Conference Proceedings. Vol. 912. pp. 235–246. doi:10.1063/1.2746600.
  31. ^ Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; Katori, Kenji; Koura, Hiroyuki; Kudo, Hisaaki; Ohnishi, Tetsuya; Ozawa, Akira; Suda, Toshimi; Sueki, Keisuke; Xu, HuShan; Yamaguchi, Takayuki; Yoneda, Akira; Yoshida, Atsushi; Zhao, YuLiang (2004). "Experiment on the Synthesis of Element 113 in the Reaction Bi(Zn,n)113". Journal of the Physical Society of Japan. 73 (10): 2593–2596. Bibcode:2004JPSJ...73.2593M. doi:10.1143/JPSJ.73.2593.
  32. Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; Yeremin, A. V.; Andreyev, A. N.; Saro, S.; Janik, R.; Leino, M. (1995). "The new element 111" (PDF). Zeitschrift für Physik A. 350 (4): 281–282. Bibcode:1995ZPhyA.350..281H. doi:10.1007/BF01291182. S2CID 18804192. Archived from the original (PDF) on 2014-01-16.
  33. Münzenberg, G.; Armbruster, P.; Heßberger, F. P.; Hofmann, S.; Poppensieker, K.; Reisdorf, W.; Schneider, J. H. R.; Schneider, W. F. W.; Schmidt, K.-H.; Sahm, C.-C.; Vermeulen, D. (1982). "Observation of one correlated α-decay in the reaction Fe on Bi→109". Zeitschrift für Physik A. 309 (1): 89–90. Bibcode:1982ZPhyA.309...89M. doi:10.1007/BF01420157. S2CID 120062541.
  34. Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Archived from the original on 2019-04-02. Retrieved 2008-06-06.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories:
Isotopes of bohrium Add topic