Misplaced Pages

Brokard's theorem

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Theorem about orthocenter and polars in circle geometry

Brokard's theorem is a theorem in projective geometry. It is commonly used in Olympiad mathematics.

Statement

Brokard's theorem. The points A, B, C, and D lie in this order on a circle ω {\displaystyle \omega } with center O'. Lines AC and BD intersect at P, AB and DC intersect at Q, and AD and BC intersect at R. Then O is the orthocenter of P Q R {\displaystyle \triangle PQR} . Furthermore, QR is the polar of P, PQ is the polar of R, and PR is the polar of Q with respect to ω {\displaystyle \omega } .

See also

References

  1. Coxeter, H. S. M. (1987). Projective Geometry (2nd ed.). Springer-Verlag. ISBN 0-387-96532-7.
  2. Heuristic ID Team (2021), HEURISTIC: For Mathematical Olympiad Approach 2nd Edition, p. 99. (in Indonesian)

External link

Stub icon

This geometry-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Brokard's theorem Add topic