Misplaced Pages

Buchholz psi functions

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Buchholz psi function)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Buchholz psi functions" – news · newspapers · books · scholar · JSTOR (September 2021) (Learn how and when to remove this message)

Buchholz's psi-functions are a hierarchy of single-argument ordinal functions ψ ν ( α ) {\displaystyle \psi _{\nu }(\alpha )} introduced by German mathematician Wilfried Buchholz in 1986. These functions are a simplified version of the θ {\displaystyle \theta } -functions, but nevertheless have the same strength as those. Later on this approach was extended by Jäger and Schütte.

Definition

Buchholz defined his functions as follows. Define:

  • Ωξ = ωξ if ξ > 0, Ω0 = 1

The functions ψv(α) for α an ordinal, v an ordinal at most ω, are defined by induction on α as follows:

  • ψv(α) is the smallest ordinal not in Cv(α)

where Cv(α) is the smallest set such that

  • Cv(α) contains all ordinals less than Ωv
  • Cv(α) is closed under ordinal addition
  • Cv(α) is closed under the functions ψu (for u≤ω) applied to arguments less than α.

The limit of this notation is the Takeuti–Feferman–Buchholz ordinal.

Properties

Let P {\displaystyle P} be the class of additively principal ordinals. Buchholz showed following properties of this functions:

  • ψ ν ( 0 ) = Ω ν , {\displaystyle \psi _{\nu }(0)=\Omega _{\nu },}
  • ψ ν ( α ) P , {\displaystyle \psi _{\nu }(\alpha )\in P,}
  • ψ ν ( α + 1 ) = min { γ P : ψ ν ( α ) < γ }  if  α C ν ( α ) , {\displaystyle \psi _{\nu }(\alpha +1)=\min\{\gamma \in P:\psi _{\nu }(\alpha )<\gamma \}{\text{ if }}\alpha \in C_{\nu }(\alpha ),}
  • Ω ν ψ ν ( α ) < Ω ν + 1 {\displaystyle \Omega _{\nu }\leq \psi _{\nu }(\alpha )<\Omega _{\nu +1}}
  • ψ 0 ( α ) = ω α  if  α < ε 0 , {\displaystyle \psi _{0}(\alpha )=\omega ^{\alpha }{\text{ if }}\alpha <\varepsilon _{0},}
  • ψ ν ( α ) = ω Ω ν + α  if  α < ε Ω ν + 1  and  ν 0 , {\displaystyle \psi _{\nu }(\alpha )=\omega ^{\Omega _{\nu }+\alpha }{\text{ if }}\alpha <\varepsilon _{\Omega _{\nu }+1}{\text{ and }}\nu \neq 0,}
  • θ ( ε Ω ν + 1 , 0 ) = ψ ( ε Ω ν + 1 )  for  0 < ν ω . {\displaystyle \theta (\varepsilon _{\Omega _{\nu }+1},0)=\psi (\varepsilon _{\Omega _{\nu }+1}){\text{ for }}0<\nu \leq \omega .}

Fundamental sequences and normal form for Buchholz's function

Normal form

The normal form for 0 is 0. If α {\displaystyle \alpha } is a nonzero ordinal number α < Ω ω {\displaystyle \alpha <\Omega _{\omega }} then the normal form for α {\displaystyle \alpha } is α = ψ ν 1 ( β 1 ) + ψ ν 2 ( β 2 ) + + ψ ν k ( β k ) {\displaystyle \alpha =\psi _{\nu _{1}}(\beta _{1})+\psi _{\nu _{2}}(\beta _{2})+\cdots +\psi _{\nu _{k}}(\beta _{k})} where ν i N 0 , k N > 0 , β i C ν i ( β i ) {\displaystyle \nu _{i}\in \mathbb {N} _{0},k\in \mathbb {N} _{>0},\beta _{i}\in C_{\nu _{i}}(\beta _{i})} and ψ ν 1 ( β 1 ) ψ ν 2 ( β 2 ) ψ ν k ( β k ) {\displaystyle \psi _{\nu _{1}}(\beta _{1})\geq \psi _{\nu _{2}}(\beta _{2})\geq \cdots \geq \psi _{\nu _{k}}(\beta _{k})} and each β i {\displaystyle \beta _{i}} is also written in normal form.

Fundamental sequences

The fundamental sequence for an ordinal number α {\displaystyle \alpha } with cofinality cof ( α ) = β {\displaystyle \operatorname {cof} (\alpha )=\beta } is a strictly increasing sequence ( α [ η ] ) η < β {\displaystyle (\alpha )_{\eta <\beta }} with length β {\displaystyle \beta } and with limit α {\displaystyle \alpha } , where α [ η ] {\displaystyle \alpha } is the η {\displaystyle \eta } -th element of this sequence. If α {\displaystyle \alpha } is a successor ordinal then cof ( α ) = 1 {\displaystyle \operatorname {cof} (\alpha )=1} and the fundamental sequence has only one element α [ 0 ] = α 1 {\displaystyle \alpha =\alpha -1} . If α {\displaystyle \alpha } is a limit ordinal then cof ( α ) { ω } { Ω μ + 1 μ 0 } {\displaystyle \operatorname {cof} (\alpha )\in \{\omega \}\cup \{\Omega _{\mu +1}\mid \mu \geq 0\}} .

For nonzero ordinals α < Ω ω {\displaystyle \alpha <\Omega _{\omega }} , written in normal form, fundamental sequences are defined as follows:

  1. If α = ψ ν 1 ( β 1 ) + ψ ν 2 ( β 2 ) + + ψ ν k ( β k ) {\displaystyle \alpha =\psi _{\nu _{1}}(\beta _{1})+\psi _{\nu _{2}}(\beta _{2})+\cdots +\psi _{\nu _{k}}(\beta _{k})} where k 2 {\displaystyle k\geq 2} then cof ( α ) = cof ( ψ ν k ( β k ) ) {\displaystyle \operatorname {cof} (\alpha )=\operatorname {cof} (\psi _{\nu _{k}}(\beta _{k}))} and α [ η ] = ψ ν 1 ( β 1 ) + + ψ ν k 1 ( β k 1 ) + ( ψ ν k ( β k ) [ η ] ) , {\displaystyle \alpha =\psi _{\nu _{1}}(\beta _{1})+\cdots +\psi _{\nu _{k-1}}(\beta _{k-1})+(\psi _{\nu _{k}}(\beta _{k})),}
  2. If α = ψ 0 ( 0 ) = 1 {\displaystyle \alpha =\psi _{0}(0)=1} , then cof ( α ) = 1 {\displaystyle \operatorname {cof} (\alpha )=1} and α [ 0 ] = 0 {\displaystyle \alpha =0} ,
  3. If α = ψ ν + 1 ( 0 ) {\displaystyle \alpha =\psi _{\nu +1}(0)} , then cof ( α ) = Ω ν + 1 {\displaystyle \operatorname {cof} (\alpha )=\Omega _{\nu +1}} and α [ η ] = Ω ν + 1 [ η ] = η {\displaystyle \alpha =\Omega _{\nu +1}=\eta } ,
  4. If α = ψ ν ( β + 1 ) {\displaystyle \alpha =\psi _{\nu }(\beta +1)} then cof ( α ) = ω {\displaystyle \operatorname {cof} (\alpha )=\omega } and α [ η ] = ψ ν ( β ) η {\displaystyle \alpha =\psi _{\nu }(\beta )\cdot \eta } (and note: ψ ν ( 0 ) = Ω ν {\displaystyle \psi _{\nu }(0)=\Omega _{\nu }} ),
  5. If α = ψ ν ( β ) {\displaystyle \alpha =\psi _{\nu }(\beta )} and cof ( β ) { ω } { Ω μ + 1 μ < ν } {\displaystyle \operatorname {cof} (\beta )\in \{\omega \}\cup \{\Omega _{\mu +1}\mid \mu <\nu \}} then cof ( α ) = cof ( β ) {\displaystyle \operatorname {cof} (\alpha )=\operatorname {cof} (\beta )} and α [ η ] = ψ ν ( β [ η ] ) {\displaystyle \alpha =\psi _{\nu }(\beta )} ,
  6. If α = ψ ν ( β ) {\displaystyle \alpha =\psi _{\nu }(\beta )} and cof ( β ) { Ω μ + 1 μ ν } {\displaystyle \operatorname {cof} (\beta )\in \{\Omega _{\mu +1}\mid \mu \geq \nu \}} then cof ( α ) = ω {\displaystyle \operatorname {cof} (\alpha )=\omega } and α [ η ] = ψ ν ( β [ γ [ η ] ] ) {\displaystyle \alpha =\psi _{\nu }(\beta ])} where { γ [ 0 ] = Ω μ γ [ η + 1 ] = ψ μ ( β [ γ [ η ] ] ) {\displaystyle \left\{{\begin{array}{lcr}\gamma =\Omega _{\mu }\\\gamma =\psi _{\mu }(\beta ])\\\end{array}}\right.} .

Explanation

Buchholz is working in Zermelo–Fraenkel set theory, that means every ordinal α {\displaystyle \alpha } is equal to set { β β < α } {\displaystyle \{\beta \mid \beta <\alpha \}} . Then condition C ν 0 ( α ) = Ω ν {\displaystyle C_{\nu }^{0}(\alpha )=\Omega _{\nu }} means that set C ν 0 ( α ) {\displaystyle C_{\nu }^{0}(\alpha )} includes all ordinals less than Ω ν {\displaystyle \Omega _{\nu }} in other words C ν 0 ( α ) = { β β < Ω ν } {\displaystyle C_{\nu }^{0}(\alpha )=\{\beta \mid \beta <\Omega _{\nu }\}} .

The condition C ν n + 1 ( α ) = C ν n ( α ) { γ P ( γ ) C ν n ( α ) } { ψ μ ( ξ ) ξ α C ν n ( α ) μ ω } {\displaystyle C_{\nu }^{n+1}(\alpha )=C_{\nu }^{n}(\alpha )\cup \{\gamma \mid P(\gamma )\subseteq C_{\nu }^{n}(\alpha )\}\cup \{\psi _{\mu }(\xi )\mid \xi \in \alpha \cap C_{\nu }^{n}(\alpha )\wedge \mu \leq \omega \}} means that set C ν n + 1 ( α ) {\displaystyle C_{\nu }^{n+1}(\alpha )} includes:

  • all ordinals from previous set C ν n ( α ) {\displaystyle C_{\nu }^{n}(\alpha )} ,
  • all ordinals that can be obtained by summation the additively principal ordinals from previous set C ν n ( α ) {\displaystyle C_{\nu }^{n}(\alpha )} ,
  • all ordinals that can be obtained by applying ordinals less than α {\displaystyle \alpha } from the previous set C ν n ( α ) {\displaystyle C_{\nu }^{n}(\alpha )} as arguments of functions ψ μ {\displaystyle \psi _{\mu }} , where μ ω {\displaystyle \mu \leq \omega } .

That is why we can rewrite this condition as:

C ν n + 1 ( α ) = { β + γ , ψ μ ( η ) β , γ , η C ν n ( α ) η < α μ ω } . {\displaystyle C_{\nu }^{n+1}(\alpha )=\{\beta +\gamma ,\psi _{\mu }(\eta )\mid \beta ,\gamma ,\eta \in C_{\nu }^{n}(\alpha )\wedge \eta <\alpha \wedge \mu \leq \omega \}.}

Thus union of all sets C ν n ( α ) {\displaystyle C_{\nu }^{n}(\alpha )} with n < ω {\displaystyle n<\omega } i.e. C ν ( α ) = n < ω C ν n ( α ) {\displaystyle C_{\nu }(\alpha )=\bigcup _{n<\omega }C_{\nu }^{n}(\alpha )} denotes the set of all ordinals which can be generated from ordinals < ν {\displaystyle <\aleph _{\nu }} by the functions + (addition) and ψ μ ( η ) {\displaystyle \psi _{\mu }(\eta )} , where μ ω {\displaystyle \mu \leq \omega } and η < α {\displaystyle \eta <\alpha } .

Then ψ ν ( α ) = min { γ γ C ν ( α ) } {\displaystyle \psi _{\nu }(\alpha )=\min\{\gamma \mid \gamma \not \in C_{\nu }(\alpha )\}} is the smallest ordinal that does not belong to this set.

Examples

Consider the following examples:

C 0 0 ( α ) = { 0 } = { β β < 1 } , {\displaystyle C_{0}^{0}(\alpha )=\{0\}=\{\beta \mid \beta <1\},}
C 0 ( 0 ) = { 0 } {\displaystyle C_{0}(0)=\{0\}} (since no functions ψ ( η < 0 ) {\displaystyle \psi (\eta <0)} and 0 + 0 = 0).

Then ψ 0 ( 0 ) = 1 {\displaystyle \psi _{0}(0)=1} .

C 0 ( 1 ) {\displaystyle C_{0}(1)} includes ψ 0 ( 0 ) = 1 {\displaystyle \psi _{0}(0)=1} and all possible sums of natural numbers and therefore ψ 0 ( 1 ) = ω {\displaystyle \psi _{0}(1)=\omega } – first transfinite ordinal, which is greater than all natural numbers by its definition.

C 0 ( 2 ) {\displaystyle C_{0}(2)} includes ψ 0 ( 0 ) = 1 , ψ 0 ( 1 ) = ω {\displaystyle \psi _{0}(0)=1,\psi _{0}(1)=\omega } and all possible sums of them and therefore ψ 0 ( 2 ) = ω 2 {\displaystyle \psi _{0}(2)=\omega ^{2}} .

If α = ω {\displaystyle \alpha =\omega } then C 0 ( α ) = { 0 , ψ ( 0 ) = 1 , , ψ ( 1 ) = ω , , ψ ( 2 ) = ω 2 , , ψ ( 3 ) = ω 3 , } {\displaystyle C_{0}(\alpha )=\{0,\psi (0)=1,\ldots ,\psi (1)=\omega ,\ldots ,\psi (2)=\omega ^{2},\ldots ,\psi (3)=\omega ^{3},\ldots \}} and ψ 0 ( ω ) = ω ω {\displaystyle \psi _{0}(\omega )=\omega ^{\omega }} .

If α = Ω {\displaystyle \alpha =\Omega } then C 0 ( α ) = { 0 , ψ ( 0 ) = 1 , , ψ ( 1 ) = ω , , ψ ( ω ) = ω ω , , ψ ( ω ω ) = ω ω ω , } {\displaystyle C_{0}(\alpha )=\{0,\psi (0)=1,\ldots ,\psi (1)=\omega ,\ldots ,\psi (\omega )=\omega ^{\omega },\ldots ,\psi (\omega ^{\omega })=\omega ^{\omega ^{\omega }},\ldots \}} and ψ 0 ( Ω ) = ε 0 {\displaystyle \psi _{0}(\Omega )=\varepsilon _{0}} – the smallest epsilon number i.e. first fixed point of α = ω α {\displaystyle \alpha =\omega ^{\alpha }} .

If α = Ω + 1 {\displaystyle \alpha =\Omega +1} then C 0 ( α ) = { 0 , 1 , , ψ 0 ( Ω ) = ε 0 , , ε 0 + ε 0 , , ψ 1 ( 0 ) = Ω , } {\displaystyle C_{0}(\alpha )=\{0,1,\ldots ,\psi _{0}(\Omega )=\varepsilon _{0},\ldots ,\varepsilon _{0}+\varepsilon _{0},\ldots ,\psi _{1}(0)=\Omega ,\ldots \}} and ψ 0 ( Ω + 1 ) = ε 0 ω = ω ε 0 + 1 {\displaystyle \psi _{0}(\Omega +1)=\varepsilon _{0}\omega =\omega ^{\varepsilon _{0}+1}} .

ψ 0 ( Ω 2 ) = ε 1 {\displaystyle \psi _{0}(\Omega 2)=\varepsilon _{1}} the second epsilon number,

ψ 0 ( Ω 2 ) = ε ε = ζ 0 {\displaystyle \psi _{0}(\Omega ^{2})=\varepsilon _{\varepsilon _{\cdots }}=\zeta _{0}} i.e. first fixed point of α = ε α {\displaystyle \alpha =\varepsilon _{\alpha }} ,

φ ( α , β ) = ψ 0 ( Ω α ( 1 + β ) ) {\displaystyle \varphi (\alpha ,\beta )=\psi _{0}(\Omega ^{\alpha }(1+\beta ))} , where φ {\displaystyle \varphi } denotes the Veblen function,

ψ 0 ( Ω Ω ) = Γ 0 = φ ( 1 , 0 , 0 ) = θ ( Ω , 0 ) {\displaystyle \psi _{0}(\Omega ^{\Omega })=\Gamma _{0}=\varphi (1,0,0)=\theta (\Omega ,0)} , where θ {\displaystyle \theta } denotes the Feferman's function and Γ 0 {\displaystyle \Gamma _{0}} is the Feferman–Schütte ordinal,

ψ 0 ( Ω Ω 2 ) = φ ( 1 , 0 , 0 , 0 ) {\displaystyle \psi _{0}(\Omega ^{\Omega ^{2}})=\varphi (1,0,0,0)} is the Ackermann ordinal,
ψ 0 ( Ω Ω ω ) {\displaystyle \psi _{0}(\Omega ^{\Omega ^{\omega }})} is the small Veblen ordinal,
ψ 0 ( Ω Ω Ω ) {\displaystyle \psi _{0}(\Omega ^{\Omega ^{\Omega }})} is the large Veblen ordinal,
ψ 0 ( Ω ↑ ↑ ω ) = ψ 0 ( ε Ω + 1 ) = θ ( ε Ω + 1 , 0 ) . {\displaystyle \psi _{0}(\Omega \uparrow \uparrow \omega )=\psi _{0}(\varepsilon _{\Omega +1})=\theta (\varepsilon _{\Omega +1},0).}

Now let's research how ψ 1 {\displaystyle \psi _{1}} works:

C 1 0 ( 0 ) = { β β < Ω 1 } = { 0 , ψ ( 0 ) = 1 , 2 , googol , , ψ 0 ( 1 ) = ω , , ψ 0 ( Ω ) = ε 0 , {\displaystyle C_{1}^{0}(0)=\{\beta \mid \beta <\Omega _{1}\}=\{0,\psi (0)=1,2,\ldots {\text{googol}},\ldots ,\psi _{0}(1)=\omega ,\ldots ,\psi _{0}(\Omega )=\varepsilon _{0},\ldots }

, ψ 0 ( Ω Ω ) = Γ 0 , , ψ ( Ω Ω Ω + Ω 2 ) , } {\displaystyle \ldots ,\psi _{0}(\Omega ^{\Omega })=\Gamma _{0},\ldots ,\psi (\Omega ^{\Omega ^{\Omega }+\Omega ^{2}}),\ldots \}} i.e. includes all countable ordinals. And therefore C 1 ( 0 ) {\displaystyle C_{1}(0)} includes all possible sums of all countable ordinals and ψ 1 ( 0 ) = Ω 1 {\displaystyle \psi _{1}(0)=\Omega _{1}} first uncountable ordinal which is greater than all countable ordinal by its definition i.e. smallest number with cardinality 1 {\displaystyle \aleph _{1}} .

If α = 1 {\displaystyle \alpha =1} then C 1 ( α ) = { 0 , , ψ 0 ( 0 ) = ω , , ψ 1 ( 0 ) = Ω , , Ω + ω , , Ω + Ω , } {\displaystyle C_{1}(\alpha )=\{0,\ldots ,\psi _{0}(0)=\omega ,\ldots ,\psi _{1}(0)=\Omega ,\ldots ,\Omega +\omega ,\ldots ,\Omega +\Omega ,\ldots \}} and ψ 1 ( 1 ) = Ω ω = ω Ω + 1 {\displaystyle \psi _{1}(1)=\Omega \omega =\omega ^{\Omega +1}} .

ψ 1 ( 2 ) = Ω ω 2 = ω Ω + 2 , {\displaystyle \psi _{1}(2)=\Omega \omega ^{2}=\omega ^{\Omega +2},}
ψ 1 ( ψ 1 ( 0 ) ) = ψ 1 ( Ω ) = Ω 2 = ω Ω + Ω , {\displaystyle \psi _{1}(\psi _{1}(0))=\psi _{1}(\Omega )=\Omega ^{2}=\omega ^{\Omega +\Omega },}
ψ 1 ( ψ 1 ( ψ 1 ( 0 ) ) ) = ω Ω + ω Ω + Ω = ω Ω Ω = ( ω Ω ) Ω = Ω Ω , {\displaystyle \psi _{1}(\psi _{1}(\psi _{1}(0)))=\omega ^{\Omega +\omega ^{\Omega +\Omega }}=\omega ^{\Omega \cdot \Omega }=(\omega ^{\Omega })^{\Omega }=\Omega ^{\Omega },}
ψ 1 4 ( 0 ) = Ω Ω Ω , {\displaystyle \psi _{1}^{4}(0)=\Omega ^{\Omega ^{\Omega }},}
ψ 1 k + 1 ( 0 ) = Ω ↑ ↑ k {\displaystyle \psi _{1}^{k+1}(0)=\Omega \uparrow \uparrow k} where k {\displaystyle k} is a natural number, k 2 {\displaystyle k\geq 2} ,
ψ 1 ( Ω 2 ) = ψ 1 ω ( 0 ) = Ω ↑ ↑ ω = ε Ω + 1 . {\displaystyle \psi _{1}(\Omega _{2})=\psi _{1}^{\omega }(0)=\Omega \uparrow \uparrow \omega =\varepsilon _{\Omega +1}.}

For case ψ ( ψ 2 ( 0 ) ) = ψ ( Ω 2 ) {\displaystyle \psi (\psi _{2}(0))=\psi (\Omega _{2})} the set C 0 ( Ω 2 ) {\displaystyle C_{0}(\Omega _{2})} includes functions ψ 0 {\displaystyle \psi _{0}} with all arguments less than Ω 2 {\displaystyle \Omega _{2}} i.e. such arguments as 0 , ψ 1 ( 0 ) , ψ 1 ( ψ 1 ( 0 ) ) , ψ 1 3 ( 0 ) , , ψ 1 ω ( 0 ) {\displaystyle 0,\psi _{1}(0),\psi _{1}(\psi _{1}(0)),\psi _{1}^{3}(0),\ldots ,\psi _{1}^{\omega }(0)}

and then

ψ 0 ( Ω 2 ) = ψ 0 ( ψ 1 ( Ω 2 ) ) = ψ 0 ( ε Ω + 1 ) . {\displaystyle \psi _{0}(\Omega _{2})=\psi _{0}(\psi _{1}(\Omega _{2}))=\psi _{0}(\varepsilon _{\Omega +1}).}

In the general case:

ψ 0 ( Ω ν + 1 ) = ψ 0 ( ψ ν ( Ω ν + 1 ) ) = ψ 0 ( ε Ω ν + 1 ) = θ ( ε Ω ν + 1 , 0 ) . {\displaystyle \psi _{0}(\Omega _{\nu +1})=\psi _{0}(\psi _{\nu }(\Omega _{\nu +1}))=\psi _{0}(\varepsilon _{\Omega _{\nu }+1})=\theta (\varepsilon _{\Omega _{\nu }+1},0).}

We also can write:

θ ( Ω ν , 0 ) = ψ 0 ( Ω ν Ω )  (for  1 ν ) < ω {\displaystyle \theta (\Omega _{\nu },0)=\psi _{0}(\Omega _{\nu }^{\Omega }){\text{ (for }}1\leq \nu )<\omega }

Ordinal notation

Buchholz defined an ordinal notation ( O T , < ) {\displaystyle {\mathsf {(OT,<)}}} associated to the ψ {\displaystyle \psi } function. We simultaneously define the sets T {\displaystyle T} and P T {\displaystyle PT} as formal strings consisting of 0 , D v {\displaystyle 0,D_{v}} indexed by v ω + 1 {\displaystyle v\in \omega +1} , braces and commas in the following way:

  • 0 T 0 P T {\displaystyle 0\in T\land 0\in PT} ,
  • ( v , a ) ( ω + 1 ) × T ( D v a T D v a P T ) {\displaystyle \forall (v,a)\in (\omega +1)\times T(D_{v}a\in T\land D_{v}a\in PT)} .
  • ( a 0 , a 1 ) P T 2 ( ( a 0 , a 1 ) T ) {\displaystyle \forall (a_{0},a_{1})\in PT^{2}((a_{0},a_{1})\in T)} .
  • s ( a 0 = s ) ( a 0 , a 1 ) T × P T ( s , a 1 ) T {\displaystyle \exists s(a_{0}=s)\land (a_{0},a_{1})\in T\times PT\rightarrow (s,a_{1})\in T} .

An element of T {\displaystyle T} is called a term, and an element of P T {\displaystyle PT} is called a principal term. By definition, T {\displaystyle T} is a recursive set and P T {\displaystyle PT} is a recursive subset of T {\displaystyle T} . Every term is either 0 {\displaystyle 0} , a principal term or a braced array of principal terms of length 2 {\displaystyle \geq 2} . We denote a P T {\displaystyle a\in PT} by ( a ) {\displaystyle (a)} . By convention, every term can be uniquely expressed as either 0 {\displaystyle 0} or a braced, non-empty array of principal terms. Since clauses 3 and 4 in the definition of T {\displaystyle T} and P T {\displaystyle PT} are applicable only to arrays of length 2 {\displaystyle \geq 2} , this convention does not cause serious ambiguity.

We then define a binary relation a < b {\displaystyle a<b} on T {\displaystyle T} in the following way:

  • b = 0 a < b = {\displaystyle b=0\rightarrow a<b=\bot }
  • a = 0 ( a < b b 0 ) {\displaystyle a=0\rightarrow (a<b\leftrightarrow b\neq 0)}
  • If a 0 b 0 {\displaystyle a\neq 0\land b\neq 0} , then:
    • If a = D u a b = D v b {\displaystyle a=D_{u}a'\land b=D_{v}b'} for some ( ( u , a ) , ( v , b ) ) ( ( ω + 1 ) × T ) 2 {\displaystyle ((u,a'),(v,b'))\in ((\omega +1)\times T)^{2}} , then a < b {\displaystyle a<b} is true if either of the following are true:
      • u < v {\displaystyle u<v}
      • u = v a < b {\displaystyle u=v\land a'<b'}
    • If a = ( a 0 , . . . , a n ) b = ( b 0 , . . . , b m ) {\displaystyle a=(a_{0},...,a_{n})\land b=(b_{0},...,b_{m})} for some ( n , m ) N 2 1 n + m {\displaystyle (n,m)\in \mathbb {N} ^{2}\land 1\leq n+m} , then a < b {\displaystyle a<b} is true if either of the following are true:
      • i N i n ( n < m a i = b i ) {\displaystyle \forall i\in \mathbb {N} \land i\leq n(n<m\land a_{i}=b_{i})}
      • k N i N i < k ( k m i n { n , m } a k < b k a i = b 1 ) {\displaystyle \exists k\in \mathbb {N} \forall i\in \mathbb {N} \land i<k(k\leq min\{n,m\}\land a_{k}<b_{k}\land a_{i}=b_{1})}

< {\displaystyle <} is a recursive strict total ordering on T {\displaystyle T} . We abbreviate ( a < b ) ( a = b ) {\displaystyle (a<b)\lor (a=b)} as a b {\displaystyle a\leq b} . Although {\displaystyle \leq } itself is not a well-ordering, its restriction to a recursive subset O T T {\displaystyle OT\subset T} , which will be described later, forms a well-ordering. In order to define O T {\displaystyle OT} , we define a subset G u a T {\displaystyle G_{u}a\subset T} for each ( u , a ) ( ω + 1 ) × T {\displaystyle (u,a)\in (\omega +1)\times T} in the following way:

  • a = 0 G u a = {\displaystyle a=0\rightarrow G_{u}a=\varnothing }
  • Suppose that a = D v a {\displaystyle a=D_{v}a'} for some ( v , a ) ( ω + 1 ) × T {\displaystyle (v,a')\in (\omega +1)\times T} , then:
    • u v G u a = { a } G u a {\displaystyle u\leq v\rightarrow G_{u}a=\{a'\}\cup G_{u}a'}
    • u > v G u a = {\displaystyle u>v\rightarrow G_{u}a=\varnothing }
  • If a = ( a 0 , . . . , a k ) {\displaystyle a=(a_{0},...,a_{k})} for some ( a i ) i = 0 k P T k + 1 {\displaystyle (a_{i})_{i=0}^{k}\in PT^{k+1}} for some k N { 0 } , G u a = i = 0 k G u a i {\displaystyle k\in \mathbb {N} \backslash \{0\},G_{u}a=\bigcup _{i=0}^{k}G_{u}a_{i}} .

b G u a {\displaystyle b\in G_{u}a} is a recursive relation on ( u , a , b ) ( ω + 1 ) × T 2 {\displaystyle (u,a,b)\in (\omega +1)\times T^{2}} . Finally, we define a subset O T T {\displaystyle OT\subset T} in the following way:

  • 0 O T {\displaystyle 0\in OT}
  • For any ( v , a ) ( ω + 1 ) × T {\displaystyle (v,a)\in (\omega +1)\times T} , D v a O T {\displaystyle D_{v}a\in OT} is equivalent to a O T {\displaystyle a\in OT} and, for any a G v a {\displaystyle a'\in G_{v}a} , a < a {\displaystyle a'<a} .
  • For any ( a i ) i = 0 k P T k + 1 {\displaystyle (a_{i})_{i=0}^{k}\in PT^{k+1}} , ( a 0 , . . . , a k ) O T {\displaystyle (a_{0},...,a_{k})\in OT} is equivalent to ( a i ) i = 0 k O T {\displaystyle (a_{i})_{i=0}^{k}\in OT} and a k . . . a 0 {\displaystyle a_{k}\leq ...\leq a_{0}} .

O T {\displaystyle OT} is a recursive subset of T {\displaystyle T} , and an element of O T {\displaystyle OT} is called an ordinal term. We can then define a map o : O T C 0 ( ε Ω ω + 1 ) {\displaystyle o:OT\rightarrow C_{0}(\varepsilon _{\Omega _{\omega }+1})} in the following way:

  • a = 0 o ( a ) = 0 {\displaystyle a=0\rightarrow o(a)=0}
  • If a = D v a {\displaystyle a=D_{v}a'} for some ( v , a ) ( ω + 1 ) × O T {\displaystyle (v,a')\in (\omega +1)\times OT} , then o ( a ) = ψ v ( o ( a ) ) {\displaystyle o(a)=\psi _{v}(o(a'))} .
  • If a = ( a 0 , . . . , a k ) {\displaystyle a=(a_{0},...,a_{k})} for some ( a i ) i = 0 k ( O T P T ) k + 1 {\displaystyle (a_{i})_{i=0}^{k}\in (OT\cap PT)^{k+1}} with k N { 0 } {\displaystyle k\in \mathbb {N} \backslash \{0\}} , then o ( a ) = o ( a 0 ) # . . . # o ( a k ) {\displaystyle o(a)=o(a_{0})\#...\#o(a_{k})} , where # {\displaystyle \#} denotes the descending sum of ordinals, which coincides with the usual addition by the definition of O T {\displaystyle OT} .

Buchholz verified the following properties of o {\displaystyle o} :

  • The map o {\displaystyle o} is an order-preserving bijective map with respect to < {\displaystyle <} and {\displaystyle \in } . In particular, o {\displaystyle o} is a recursive strict well-ordering on O T {\displaystyle OT} .
  • For any a O T {\displaystyle a\in OT} satisfying a < D 1 0 {\displaystyle a<D_{1}0} , o ( a ) {\displaystyle o(a)} coincides with the ordinal type of < {\displaystyle <} restricted to the countable subset { x O T | x < a } {\displaystyle \{x\in OT\;|\;x<a\}} .
  • The Takeuti-Feferman-Buchholz ordinal coincides with the ordinal type of < {\displaystyle <} restricted to the recursive subset { x O T | x < D 1 0 } {\displaystyle \{x\in OT\;|\;x<D_{1}0\}} .
  • The ordinal type of ( O T , < ) {\displaystyle (OT,<)} is greater than the Takeuti-Feferman-Buchholz ordinal.
  • For any v N { 0 } {\displaystyle v\in \mathbb {N} \;\backslash \;\{0\}} , the well-foundedness of < {\displaystyle <} restricted to the recursive subset { x O T | x < D 0 D v + 1 0 } {\displaystyle \{x\in OT\;|\;x<D_{0}D_{v+1}0\}} in the sense of the non-existence of a primitive recursive infinite descending sequence is not provable under I D v {\displaystyle {\mathsf {ID}}_{v}} .
  • The well-foundedness of < {\displaystyle <} restricted to the recursive subset { x O T | x < D 0 D ω 0 } {\displaystyle \{x\in OT\;|\;x<D_{0}D_{\omega }0\}} in the same sense as above is not provable under Π 1 1 C A 0 {\displaystyle \Pi _{1}^{1}-CA_{0}} .

Normal form

The normal form for Buchholz's function can be defined by the pull-back of standard form for the ordinal notation associated to it by o {\displaystyle o} . Namely, the set N F {\displaystyle NF} of predicates on ordinals in C 0 ( ε Ω ω + 1 ) {\displaystyle C_{0}(\varepsilon _{\Omega _{\omega }+1})} is defined in the following way:

  • The predicate α = N F 0 {\displaystyle \alpha =_{NF}0} on an ordinal α C 0 ( ε Ω ω + 1 ) {\displaystyle \alpha \in C_{0}(\varepsilon _{\Omega _{\omega }+1})} defined as α = 0 {\displaystyle \alpha =0} belongs to N F {\displaystyle NF} .
  • The predicate α 0 = N F ψ k 1 ( α 1 ) {\displaystyle \alpha _{0}=_{NF}\psi _{k_{1}}(\alpha _{1})}  on ordinals α 0 , α 1 C 0 ( ε Ω ω + 1 ) {\displaystyle \alpha _{0},\alpha _{1}\in C_{0}(\varepsilon _{\Omega _{\omega }+1})}  with k 1 = ω + 1 {\displaystyle k_{1}=\omega +1}  defined as α 0 = ψ k 1 ( α 1 ) {\displaystyle \alpha _{0}=\psi _{k_{1}}(\alpha _{1})}  and α 1 = C k 1 ( α 1 ) {\displaystyle \alpha _{1}=C_{k_{1}}(\alpha _{1})}  belongs to N F {\displaystyle NF} .
  • The predicate α 0 = N F α 1 + . . . + α n {\displaystyle \alpha _{0}=_{NF}\alpha _{1}+...+\alpha _{n}} on ordinals α 0 , α 1 , . . . , α n C 0 ( ε Ω ω + 1 ) {\displaystyle \alpha _{0},\alpha _{1},...,\alpha _{n}\in C_{0}(\varepsilon _{\Omega _{\omega }+1})}  with an integer n > 1 {\displaystyle n>1}  defined as α 0 = α 1 + . . . + α n {\displaystyle \alpha _{0}=\alpha _{1}+...+\alpha _{n}} , α 1 . . . α n {\displaystyle \alpha _{1}\geq ...\geq \alpha _{n}} , and α 1 , . . . , α n A P {\displaystyle \alpha _{1},...,\alpha _{n}\in AP}  belongs to N F {\displaystyle NF} . Here + {\displaystyle +}  is a function symbol rather than an actual addition, and A P {\displaystyle AP}  denotes the class of additive principal numbers.

It is also useful to replace the third case by the following one obtained by combining the second condition:

  • The predicate α 0 = N F ψ k 1 ( α 1 ) + . . . + ψ k n ( α n ) {\displaystyle \alpha _{0}=_{NF}\psi _{k_{1}}(\alpha _{1})+...+\psi _{k_{n}}(\alpha _{n})} on ordinals α 0 , α 1 , . . . , α n C 0 ( ε Ω ω + 1 ) {\displaystyle \alpha _{0},\alpha _{1},...,\alpha _{n}\in C_{0}(\varepsilon _{\Omega _{\omega }+1})}  with an integer n > 1 {\displaystyle n>1}  and k 1 , . . . , k n ω + 1 {\displaystyle k_{1},...,k_{n}\in \omega +1} defined as α 0 = ψ k 1 ( α 1 ) + . . . + ψ k n ( α n ) {\displaystyle \alpha _{0}=\psi _{k_{1}}(\alpha _{1})+...+\psi _{k_{n}}(\alpha _{n})} , ψ k 1 ( α 1 ) . . . ψ k n ( α n ) {\displaystyle \psi _{k_{1}}(\alpha _{1})\geq ...\geq \psi _{k_{n}}(\alpha _{n})} , and α 1 C k 1 ( α 1 ) , . . . , α n C k n ( α n ) A P {\displaystyle \alpha _{1}\in C_{k_{1}}(\alpha _{1}),...,\alpha _{n}\in C_{k_{n}}(\alpha _{n})\in AP}  belongs to N F {\displaystyle NF} .

We note that those two formulations are not equivalent. For example, ψ 0 ( Ω ) + 1 = N F ψ 0 ( ζ 1 ) + ψ 0 ( 0 ) {\displaystyle \psi _{0}(\Omega )+1=_{NF}\psi _{0}(\zeta _{1})+\psi _{0}(0)}  is a valid formula which is false with respect to the second formulation because of ζ 1 C 0 ( ζ 1 ) {\displaystyle \zeta _{1}\neq C_{0}(\zeta _{1})} , while it is a valid formula which is true with respect to the first formulation because of ψ 0 ( Ω ) + 1 = ψ 0 ( ζ 1 ) + ψ 0 ( 0 ) {\displaystyle \psi _{0}(\Omega )+1=\psi _{0}(\zeta _{1})+\psi _{0}(0)} , ψ 0 ( ζ 1 ) , ψ 0 ( 0 ) A P {\displaystyle \psi _{0}(\zeta _{1}),\psi _{0}(0)\in AP} , and ψ 0 ( ζ 1 ) ψ 0 ( 0 ) {\displaystyle \psi _{0}(\zeta _{1})\geq \psi _{0}(0)} . In this way, the notion of normal form heavily depends on the context. In both formulations, every ordinal in C 0 ( ε Ω ω + 1 ) {\displaystyle C_{0}(\varepsilon _{\Omega _{\omega }+1})}  can be uniquely expressed in normal form for Buchholz's function.

References

  1. Jäger, G (1984). "ρ-inaccessible ordinals, collapsing functions and a recursive notation system". Archiv für Mathematische Logik und Grundlagenforschung. 24 (1): 49–62. doi:10.1007/BF02007140. S2CID 38619369.
  2. Buchholz, W.; Schütte, K. (1983). "Ein Ordinalzahlensystem ftir die beweistheoretische Abgrenzung der H~-Separation und Bar-Induktion". Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Math.-Naturw. Klasse.
  3. ^ Buchholz, W. (1986). "A new system of proof-theoretic ordinal functions" (PDF). Annals of Pure and Applied Logic. 32: 195–207. doi:10.1016/0168-0072(86)90052-7.
Category:
Buchholz psi functions Add topic