Misplaced Pages

Cantic octagonal tiling

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Cantic octagonal tiling
Cantic octagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.6.4.6
Schläfli symbol h2{8,3}
Wythoff symbol 4 3 | 3
Coxeter diagram =
Symmetry group , (*433)
Dual Order-4-3-3 t12 dual tiling
Properties Vertex-transitive

In geometry, the tritetratrigonal tiling or shieldotritetragonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t1,2(4,3,3). It can also be named as a cantic octagonal tiling, h2{8,3}.

Dual tiling

Related polyhedra and tiling

Uniform (4,3,3) tilings
Symmetry: , (*433) , (433)
h{8,3}
t0(4,3,3)
r{3,8}/2
t0,1(4,3,3)
h{8,3}
t1(4,3,3)
h2{8,3}
t1,2(4,3,3)
{3,8}/2
t2(4,3,3)
h2{8,3}
t0,2(4,3,3)
t{3,8}/2
t0,1,2(4,3,3)
s{3,8}/2
s(4,3,3)
Uniform duals
V(3.4) V3.8.3.8 V(3.4) V3.6.4.6 V(3.3) V3.6.4.6 V6.6.8 V3.3.3.3.3.4
*n33 orbifold symmetries of cantic tilings: 3.6.n.6
Symmetry
*n32

=
Spherical Euclidean Compact Hyperbolic Paracompact
*233

=
*333

=
*433

=
*533

=
*633...

=
*∞33

=
Coxeter
Schläfli
=
h2{4,3}
=
h2{6,3}
=
h2{8,3}
=
h2{10,3}
=
h2{12,3}
=
h2{∞,3}
Cantic
figure
Vertex 3.6.2.6 3.6.3.6 3.6.4.6 3.6.5.6 3.6.6.6 3.6..6

Domain
Wythoff 2 3 | 3 3 3 | 3 4 3 | 3 5 3 | 3 6 3 | 3 ∞ 3 | 3
Dual
figure
Face V3.6.2.6 V3.6.3.6 V3.6.4.6 V3.6.5.6 V3.6.6.6 V3.6.∞.6

See also

References

External links

Tessellation
Periodic


Aperiodic
Other
By vertex type
Spherical
Regular
Semi-
regular
Hyper-
bolic


Stub icon

This hyperbolic geometry-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Cantic octagonal tiling Add topic