Misplaced Pages

Caputo fractional derivative

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Generalization in fractional calculus

In mathematics, the Caputo fractional derivative, also called Caputo-type fractional derivative, is a generalization of derivatives for non-integer orders named after Michele Caputo. Caputo first defined this form of fractional derivative in 1967.

Motivation

The Caputo fractional derivative is motivated from the Riemann–Liouville fractional integral. Let f {\textstyle f} be continuous on ( 0 , ) {\displaystyle \left(0,\,\infty \right)} , then the Riemann–Liouville fractional integral RL I {\textstyle {^{\text{RL}}\operatorname {I} }} states that

0 RL I x α [ f ( x ) ] = 1 Γ ( α ) 0 x f ( t ) ( x t ) 1 α d t {\displaystyle {_{0}^{\text{RL}}\operatorname {I} _{x}^{\alpha }}\left={\frac {1}{\Gamma \left(-\alpha \right)}}\cdot \int \limits _{0}^{x}{\frac {f\left(t\right)}{\left(x-t\right)^{1-\alpha }}}\,\operatorname {d} t}

where Γ ( ) {\textstyle \Gamma \left(\cdot \right)} is the Gamma function.

Let's define D x α := d α d x α {\textstyle \operatorname {D} _{x}^{\alpha }:={\frac {\operatorname {d} ^{\alpha }}{\operatorname {d} x^{\alpha }}}} , say that D x α D x β = D x α + β {\textstyle \operatorname {D} _{x}^{\alpha }\operatorname {D} _{x}^{\beta }=\operatorname {D} _{x}^{\alpha +\beta }} and that D x α = RL I x α {\textstyle \operatorname {D} _{x}^{\alpha }={^{\text{RL}}\operatorname {I} _{x}^{-\alpha }}} applies. If α = m + z R m N 0 0 < z < 1 {\textstyle \alpha =m+z\in \mathbb {R} \wedge m\in \mathbb {N} _{0}\wedge 0<z<1} then we could say D x α = D x m + z = D x z + m = D x z 1 + 1 + m = D x z 1 D x 1 + m = RL I x 1 z D x 1 + m {\textstyle \operatorname {D} _{x}^{\alpha }=\operatorname {D} _{x}^{m+z}=\operatorname {D} _{x}^{z+m}=\operatorname {D} _{x}^{z-1+1+m}=\operatorname {D} _{x}^{z-1}\operatorname {D} _{x}^{1+m}={^{\text{RL}}\operatorname {I} }_{x}^{1-z}\operatorname {D} _{x}^{1+m}} . So if f {\displaystyle f} is also C m ( 0 , ) {\displaystyle C^{m}\left(0,\,\infty \right)} , then

D x m + z [ f ( x ) ] = 1 Γ ( 1 z ) 0 x f ( 1 + m ) ( t ) ( x t ) z d t . {\displaystyle {\operatorname {D} _{x}^{m+z}}\left={\frac {1}{\Gamma \left(1-z\right)}}\cdot \int \limits _{0}^{x}{\frac {f^{\left(1+m\right)}\left(t\right)}{\left(x-t\right)^{z}}}\,\operatorname {d} t.}

This is known as the Caputo-type fractional derivative, often written as C D x α {\textstyle {^{\text{C}}\operatorname {D} }_{x}^{\alpha }} .

Definition

The first definition of the Caputo-type fractional derivative was given by Caputo as:

C D x m + z [ f ( x ) ] = 1 Γ ( 1 z ) 0 x f ( m + 1 ) ( t ) ( x t ) z d t {\displaystyle {^{\text{C}}\operatorname {D} _{x}^{m+z}}\left={\frac {1}{\Gamma \left(1-z\right)}}\cdot \int \limits _{0}^{x}{\frac {f^{\left(m+1\right)}\left(t\right)}{\left(x-t\right)^{z}}}\,\operatorname {d} t}

where C m ( 0 , ) {\displaystyle C^{m}\left(0,\,\infty \right)} and m N 0 0 < z < 1 {\textstyle m\in \mathbb {N} _{0}\wedge 0<z<1} .

A popular equivalent definition is:

C D x α [ f ( x ) ] = 1 Γ ( α α ) 0 x f ( α ) ( t ) ( x t ) α + 1 α d t {\displaystyle {^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left={\frac {1}{\Gamma \left(\left\lceil \alpha \right\rceil -\alpha \right)}}\cdot \int \limits _{0}^{x}{\frac {f^{\left(\left\lceil \alpha \right\rceil \right)}\left(t\right)}{\left(x-t\right)^{\alpha +1-\left\lceil \alpha \right\rceil }}}\,\operatorname {d} t}

where α R > 0 N {\textstyle \alpha \in \mathbb {R} _{>0}\setminus \mathbb {N} } and {\textstyle \left\lceil \cdot \right\rceil } is the ceiling function. This can be derived by substituting α = m + z {\textstyle \alpha =m+z} so that α = m + 1 {\textstyle \left\lceil \alpha \right\rceil =m+1} would apply and α + z = α + 1 {\textstyle \left\lceil \alpha \right\rceil +z=\alpha +1} follows.

Another popular equivalent definition is given by:

C D x α [ f ( x ) ] = 1 Γ ( n α ) 0 x f ( n ) ( t ) ( x t ) α + 1 n d t {\displaystyle {^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left={\frac {1}{\Gamma \left(n-\alpha \right)}}\cdot \int \limits _{0}^{x}{\frac {f^{\left(n\right)}\left(t\right)}{\left(x-t\right)^{\alpha +1-n}}}\,\operatorname {d} t}

where n 1 < α < n N . {\textstyle n-1<\alpha <n\in \mathbb {N} .} .

The problem with these definitions is that they only allow arguments in ( 0 , ) {\textstyle \left(0,\,\infty \right)} . This can be fixed by replacing the lower integral limit with a {\textstyle a} : a C D x α [ f ( x ) ] = 1 Γ ( α α ) a x f ( α ) ( t ) ( x t ) α + 1 α d t {\textstyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left={\frac {1}{\Gamma \left(\left\lceil \alpha \right\rceil -\alpha \right)}}\cdot \int \limits _{a}^{x}{\frac {f^{\left(\left\lceil \alpha \right\rceil \right)}\left(t\right)}{\left(x-t\right)^{\alpha +1-\left\lceil \alpha \right\rceil }}}\,\operatorname {d} t} . The new domain is ( a , ) {\textstyle \left(a,\,\infty \right)} .

Properties and theorems

Basic properties and theorems

A few basic properties are:

A table of basic properties and theorems
Properties f ( x ) {\displaystyle f\left(x\right)} a C D x α [ f ( x ) ] {\displaystyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left} Condition
Definition f ( x ) {\displaystyle f\left(x\right)} f ( α ) ( x ) f ( α ) ( a ) {\displaystyle f^{\left(\alpha \right)}\left(x\right)-f^{\left(\alpha \right)}\left(a\right)}
Linearity b g ( x ) + c h ( x ) {\displaystyle b\cdot g\left(x\right)+c\cdot h\left(x\right)} b a C D x α [ g ( x ) ] + c a C D x α [ h ( x ) ] {\displaystyle b\cdot {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left+c\cdot {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left}
Index law D x β {\displaystyle \operatorname {D} _{x}^{\beta }} a C D x α + β {\displaystyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha +\beta }}} β Z {\displaystyle \beta \in \mathbb {Z} }
Semigroup property a C D x β {\displaystyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\beta }}} a C D x α + β {\displaystyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha +\beta }}} α = β {\displaystyle \left\lceil \alpha \right\rceil =\left\lceil \beta \right\rceil }

Non-commutation

The index law does not always fulfill the property of commutation:

a C D x α a C D x β = a C D x α + β a C D x β a C D x α {\displaystyle \operatorname {_{a}^{\text{C}}D} _{x}^{\alpha }\operatorname {_{a}^{\text{C}}D} _{x}^{\beta }=\operatorname {_{a}^{\text{C}}D} _{x}^{\alpha +\beta }\neq \operatorname {_{a}^{\text{C}}D} _{x}^{\beta }\operatorname {_{a}^{\text{C}}D} _{x}^{\alpha }}

where α R > 0 N β N {\displaystyle \alpha \in \mathbb {R} _{>0}\setminus \mathbb {N} \wedge \beta \in \mathbb {N} } .

Fractional Leibniz rule

The Leibniz rule for the Caputo fractional derivative is given by:

a C D x α [ g ( x ) h ( x ) ] = k = 0 [ ( a k ) g ( k ) ( x ) a RL D x α k [ h ( x ) ] ] ( x a ) α Γ ( 1 α ) g ( a ) h ( a ) {\displaystyle \operatorname {_{a}^{\text{C}}D} _{x}^{\alpha }\left=\sum \limits _{k=0}^{\infty }\left\right]-{\frac {\left(x-a\right)^{-\alpha }}{\Gamma \left(1-\alpha \right)}}\cdot g\left(a\right)\cdot h\left(a\right)}

where ( a b ) = Γ ( a + 1 ) Γ ( b + 1 ) Γ ( a b + 1 ) {\textstyle {\binom {a}{b}}={\frac {\Gamma \left(a+1\right)}{\Gamma \left(b+1\right)\cdot \Gamma \left(a-b+1\right)}}} is the binomial coefficient.

Relation to other fractional differential operators

Caputo-type fractional derivative is closely related to the Riemann–Liouville fractional integral via its definition:

a C D x α [ f ( x ) ] = a RL I x α α [ D x α [ f ( x ) ] ] {\displaystyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left={_{a}^{\text{RL}}\operatorname {I} _{x}^{\left\lceil \alpha \right\rceil -\alpha }}\left\right]}

Furthermore, the following relation applies:

a C D x α [ f ( x ) ] = a RL D x α [ f ( x ) ] k = 0 α [ x k α Γ ( k α + 1 ) f ( k ) ( 0 ) ] {\displaystyle {_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left={_{a}^{\text{RL}}\operatorname {D} _{x}^{\alpha }}\left-\sum \limits _{k=0}^{\left\lceil \alpha \right\rceil }\left}

where a RL D x α {\displaystyle {_{a}^{\text{RL}}\operatorname {D} _{x}^{\alpha }}} is the Riemann–Liouville fractional derivative.

Laplace transform

The Laplace transform of the Caputo-type fractional derivative is given by:

L x { a C D x α [ f ( x ) ] } ( s ) = s α F ( s ) k = 0 α [ s α k 1 f ( k ) ( 0 ) ] {\displaystyle {\mathcal {L}}_{x}\left\{{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left\right\}\left(s\right)=s^{\alpha }\cdot F\left(s\right)-\sum \limits _{k=0}^{\left\lceil \alpha \right\rceil }\left}

where L x { f ( x ) } ( s ) = F ( s ) {\textstyle {\mathcal {L}}_{x}\left\{f\left(x\right)\right\}\left(s\right)=F\left(s\right)} .

Caputo fractional derivative of some functions

The Caputo fractional derivative of a constant c {\displaystyle c} is given by:

a C D x α [ c ] = 1 Γ ( α α ) a x D t α [ c ] ( x t ) α + 1 α d t = 1 Γ ( α α ) a x 0 ( x t ) α + 1 α d t a C D x α [ c ] = 0 {\displaystyle {\begin{aligned}{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left&={\frac {1}{\Gamma \left(\left\lceil \alpha \right\rceil -\alpha \right)}}\cdot \int \limits _{a}^{x}{\frac {\operatorname {D} _{t}^{\left\lceil \alpha \right\rceil }\left}{\left(x-t\right)^{\alpha +1-\left\lceil \alpha \right\rceil }}}\,\operatorname {d} t={\frac {1}{\Gamma \left(\left\lceil \alpha \right\rceil -\alpha \right)}}\cdot \int \limits _{a}^{x}{\frac {0}{\left(x-t\right)^{\alpha +1-\left\lceil \alpha \right\rceil }}}\,\operatorname {d} t\\{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left&=0\end{aligned}}}

The Caputo fractional derivative of a power function x b {\displaystyle x^{b}} is given by:

a C D x α [ x b ] = a RL I x α α [ D x α [ x b ] ] = Γ ( b + 1 ) Γ ( b α + 1 ) a RL I x α α [ x b α ] a C D x α [ x b ] = { Γ ( b + 1 ) Γ ( b α + 1 ) ( x b α a b α ) , for  α 1 < b b R 0 , for  α 1 b b N {\displaystyle {\begin{aligned}{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left&={_{a}^{\text{RL}}\operatorname {I} _{x}^{\left\lceil \alpha \right\rceil -\alpha }}\left\right]={\frac {\Gamma \left(b+1\right)}{\Gamma \left(b-\left\lceil \alpha \right\rceil +1\right)}}\cdot {_{a}^{\text{RL}}\operatorname {I} _{x}^{\left\lceil \alpha \right\rceil -\alpha }}\left\\{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left&={\begin{cases}{\frac {\Gamma \left(b+1\right)}{\Gamma \left(b-\alpha +1\right)}}\left(x^{b-\alpha }-a^{b-\alpha }\right),\,&{\text{for }}\left\lceil \alpha \right\rceil -1<b\wedge b\in \mathbb {R} \\0,\,&{\text{for }}\left\lceil \alpha \right\rceil -1\geq b\wedge b\in \mathbb {N} \\\end{cases}}\end{aligned}}}

The Caputo fractional derivative of an exponential function e a x {\displaystyle e^{a\cdot x}} is given by:

a C D x α [ e b x ] = a RL I x α α [ D x α [ e b x ] ] = b α a RL I x α α [ e b x ] a C D x α [ e b x ] = b α ( E x ( α α , b ) E a ( α α , b ) ) {\displaystyle {\begin{aligned}{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left&={_{a}^{\text{RL}}\operatorname {I} _{x}^{\left\lceil \alpha \right\rceil -\alpha }}\left\right]=b^{\left\lceil \alpha \right\rceil }\cdot {_{a}^{\text{RL}}\operatorname {I} _{x}^{\left\lceil \alpha \right\rceil -\alpha }}\left\\{_{a}^{\text{C}}\operatorname {D} _{x}^{\alpha }}\left&=b^{\alpha }\cdot \left(E_{x}\left(\left\lceil \alpha \right\rceil -\alpha ,\,b\right)-E_{a}\left(\left\lceil \alpha \right\rceil -\alpha ,\,b\right)\right)\\\end{aligned}}}

where E x ( ν , a ) = a ν e a x γ ( ν , a x ) Γ ( ν ) {\textstyle E_{x}\left(\nu ,\,a\right)={\frac {a^{-\nu }\cdot e^{a\cdot x}\cdot \gamma \left(\nu ,\,a\cdot x\right)}{\Gamma \left(\nu \right)}}} is the E t {\textstyle \operatorname {E} _{t}} -function and γ ( a , b ) {\textstyle \gamma \left(a,\,b\right)} is the lower incomplete gamma function.

References

  1. Diethelm, Kai (2019). "General theory of Caputo-type fractional differential equations". Fractional Differential Equations. pp. 1–20. doi:10.1515/9783110571660-001. ISBN 978-3-11-057166-0. Retrieved 2023-08-10.
  2. Caputo, Michele (1967). "Linear Models of Dissipation whose Q is almost Frequency Independent-II". ResearchGate. 13 (5): 530. Bibcode:1967GeoJ...13..529C. doi:10.1111/j.1365-246X.1967.tb02303.x.
  3. Lazarević, Mihailo; Rapaić, Milan Rade; Šekara, Tomislav (2014). "Introduction to Fractional Calculus with Brief Historical Background". ResearchGate: 8.
  4. Dimitrov, Yuri; Georgiev, Slavi; Todorov, Venelin (2023). "Approximation of Caputo Fractional Derivative and Numerical Solutions of Fractional Differential Equations". Fractal and Fractional. 7 (10): 750. doi:10.3390/fractalfract7100750.
  5. Sikora, Beata (2023). "Remarks on the Caputo fractional derivative" (PDF). Matematyka I Informatyka Na Uczelniach Technicznych (5): 78–79.
  6. Huseynov, Ismail; Ahmadova, Arzu; Mahmudov, Nazim (2020). "Fractional Leibniz integral rules for Riemann-Liouville and Caputo fractional derivatives and their applications". ResearchGate: 1. arXiv:2012.11360.
  7. Weisstein, Eric W. (2024). "Binomial Coefficient". mathworld.wolfram.com. Retrieved 2024-05-20.
  8. Sontakke, Bhausaheb Rajba; Shaikh, Amjad (2015). "Properties of Caputo Operator and Its Applications to Linear Fractional Differential Equations" (PDF). Journal of Engineering Research and Applications. 5 (5): 23–24. ISSN 2248-9622.
  9. Weisstein, Eric W. "Fractional Derivative". mathworld.wolfram.com. Retrieved 2024-05-20.
  10. Weisstein, Eric W. (2024). "E_t-Function". mathworld.wolfram.com. Retrieved 2024-05-20.

Further reading

Category: