Misplaced Pages

Carminati–McLenaghan invariants

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (May 2022) (Learn how and when to remove this message)

In general relativity, the Carminati–McLenaghan invariants or CM scalars are a set of 16 scalar curvature invariants for the Riemann tensor. This set is usually supplemented with at least two additional invariants.

Mathematical definition

The CM invariants consist of 6 real scalars plus 5 complex scalars, making a total of 16 invariants. They are defined in terms of the Weyl tensor C a b c d {\displaystyle C_{abcd}} and its right (or left) dual C i j k l = ( 1 / 2 ) ϵ k l m n C i j m n {\displaystyle {{}^{\star }C}_{ijkl}=(1/2)\epsilon _{klmn}C_{ij}{}^{mn}} , the Ricci tensor R a b {\displaystyle R_{ab}} , and the trace-free Ricci tensor

S a b = R a b 1 4 R g a b {\displaystyle S_{ab}=R_{ab}-{\frac {1}{4}}\,R\,g_{ab}}

In the following, it may be helpful to note that if we regard S a b {\displaystyle {S^{a}}_{b}} as a matrix, then S a m S m b {\displaystyle {S^{a}}_{m}\,{S^{m}}_{b}} is the square of this matrix, so the trace of the square is S a b S b a {\displaystyle {S^{a}}_{b}\,{S^{b}}_{a}} , and so forth.

The real CM scalars are:

  1. R = R m m {\displaystyle R={R^{m}}_{m}} (the trace of the Ricci tensor)
  2. R 1 = 1 4 S a b S b a {\displaystyle R_{1}={\frac {1}{4}}\,{S^{a}}_{b}\,{S^{b}}_{a}}
  3. R 2 = 1 8 S a b S b c S c a {\displaystyle R_{2}=-{\frac {1}{8}}\,{S^{a}}_{b}\,{S^{b}}_{c}\,{S^{c}}_{a}}
  4. R 3 = 1 16 S a b S b c S c d S d a {\displaystyle R_{3}={\frac {1}{16}}\,{S^{a}}_{b}\,{S^{b}}_{c}\,{S^{c}}_{d}\,{S^{d}}_{a}}
  5. M 3 = 1 16 S b c S e f ( C a b c d C a e f d + C a b c d C a e f d ) {\displaystyle M_{3}={\frac {1}{16}}\,S^{bc}\,S_{ef}\left(C_{abcd}\,C^{aefd}+{{}^{\star }C}_{abcd}\,{{}^{\star }C}^{aefd}\right)}
  6. M 4 = 1 32 S a g S e f S c d ( C a c d b C b e f g + C a c d b C b e f g ) {\displaystyle M_{4}=-{\frac {1}{32}}\,S^{ag}\,S^{ef}\,{S^{c}}_{d}\,\left({C_{ac}}^{db}\,C_{befg}+{{{}^{\star }C}_{ac}}^{db}\,{{}^{\star }C}_{befg}\right)}

The complex CM scalars are:

  1. W 1 = 1 8 ( C a b c d + i C a b c d ) C a b c d {\displaystyle W_{1}={\frac {1}{8}}\,\left(C_{abcd}+i\,{{}^{\star }C}_{abcd}\right)\,C^{abcd}}
  2. W 2 = 1 16 ( C a b c d + i C a b c d ) C c d e f C e f a b {\displaystyle W_{2}=-{\frac {1}{16}}\,\left({C_{ab}}^{cd}+i\,{{{}^{\star }C}_{ab}}^{cd}\right)\,{C_{cd}}^{ef}\,{C_{ef}}^{ab}}
  3. M 1 = 1 8 S a b S c d ( C a c d b + i C a c d b ) {\displaystyle M_{1}={\frac {1}{8}}\,S^{ab}\,S^{cd}\,\left(C_{acdb}+i\,{{}^{\star }C}_{acdb}\right)}
  4. M 2 = 1 16 S b c S e f ( C a b c d C a e f d C a b c d C a e f d ) + 1 8 i S b c S e f C a b c d C a e f d {\displaystyle M_{2}={\frac {1}{16}}\,S^{bc}\,S_{ef}\,\left(C_{abcd}\,C^{aefd}-{{}^{\star }C}_{abcd}\,{{}^{\star }C}^{aefd}\right)+{\frac {1}{8}}\,i\,S^{bc}\,S_{ef}\,{{}^{\star }C}_{abcd}\,C^{aefd}}
  5. M 5 = 1 32 S c d S e f ( C a g h b + i C a g h b ) ( C a c d b C g e f h + C a c d b C g e f h ) {\displaystyle M_{5}={\frac {1}{32}}\,S^{cd}\,S^{ef}\,\left(C^{aghb}+i\,{{}^{\star }C}^{aghb}\right)\,\left(C_{acdb}\,C_{gefh}+{{}^{\star }C}_{acdb}\,{{}^{\star }C}_{gefh}\right)}

The CM scalars have the following degrees:

  1. R {\displaystyle R} is linear,
  2. R 1 , W 1 {\displaystyle R_{1},\,W_{1}} are quadratic,
  3. R 2 , W 2 , M 1 {\displaystyle R_{2},\,W_{2},\,M_{1}} are cubic,
  4. R 3 , M 2 , M 3 {\displaystyle R_{3},\,M_{2},\,M_{3}} are quartic,
  5. M 4 , M 5 {\displaystyle M_{4},\,M_{5}} are quintic.

They can all be expressed directly in terms of the Ricci spinors and Weyl spinors, using Newman–Penrose formalism; see the link below.

Complete sets of invariants

In the case of spherically symmetric spacetimes or planar symmetric spacetimes, it is known that

R , R 1 , R 2 , R 3 , ( W 1 ) , ( M 1 ) , ( M 2 ) {\displaystyle R,\,R_{1},\,R_{2},\,R_{3},\,\Re (W_{1}),\,\Re (M_{1}),\,\Re (M_{2})}
1 32 S c d S e f C a g h b C a c d b C g e f h {\displaystyle {\frac {1}{32}}\,S^{cd}\,S^{ef}\,C^{aghb}\,C_{acdb}\,C_{gefh}}

comprise a complete set of invariants for the Riemann tensor. In the case of vacuum solutions, electrovacuum solutions and perfect fluid solutions, the CM scalars comprise a complete set. Additional invariants may be required for more general spacetimes; determining the exact number (and possible syzygies among the various invariants) is an open problem.

See also

References

External links

Category:
Carminati–McLenaghan invariants Add topic