In astrophysics , Chandrasekhar potential energy tensor provides the gravitational potential of a body due to its own gravity created by the distribution of matter across the body, named after the Indian American astrophysicist Subrahmanyan Chandrasekhar . The Chandrasekhar tensor is a generalization of potential energy in other words, the trace of the Chandrasekhar tensor provides the potential energy of the body.
Definition
The Chandrasekhar potential energy tensor is defined as
W
i
j
=
−
1
2
∫
V
ρ
Φ
i
j
d
x
=
∫
V
ρ
x
i
∂
Φ
∂
x
j
d
x
{\displaystyle W_{ij}=-{\frac {1}{2}}\int _{V}\rho \Phi _{ij}d\mathbf {x} =\int _{V}\rho x_{i}{\frac {\partial \Phi }{\partial x_{j}}}d\mathbf {x} }
where
Φ
i
j
(
x
)
=
G
∫
V
ρ
(
x
′
)
(
x
i
−
x
i
′
)
(
x
j
−
x
j
′
)
|
x
−
x
′
|
3
d
x
′
,
⇒
Φ
i
i
=
Φ
=
G
∫
V
ρ
(
x
′
)
|
x
−
x
′
|
d
x
′
{\displaystyle \Phi _{ij}(\mathbf {x} )=G\int _{V}\rho (\mathbf {x'} ){\frac {(x_{i}-x_{i}')(x_{j}-x_{j}')}{|\mathbf {x} -\mathbf {x'} |^{3}}}d\mathbf {x'} ,\quad \Rightarrow \quad \Phi _{ii}=\Phi =G\int _{V}{\frac {\rho (\mathbf {x'} )}{|\mathbf {x} -\mathbf {x'} |}}d\mathbf {x'} }
where
G
{\displaystyle G}
is the Gravitational constant
Φ
(
x
)
{\displaystyle \Phi (\mathbf {x} )}
is the self-gravitating potential from Newton's law of gravity
Φ
i
j
{\displaystyle \Phi _{ij}}
is the generalized version of
Φ
{\displaystyle \Phi }
ρ
(
x
)
{\displaystyle \rho (\mathbf {x} )}
is the matter density distribution
V
{\displaystyle V}
is the volume of the body
It is evident that
W
i
j
{\displaystyle W_{ij}}
is a symmetric tensor from its definition. The trace of the Chandrasekhar tensor
W
i
j
{\displaystyle W_{ij}}
is nothing but the potential energy
W
{\displaystyle W}
.
W
=
W
i
i
=
−
1
2
∫
V
ρ
Φ
d
x
=
∫
V
ρ
x
i
∂
Φ
∂
x
i
d
x
{\displaystyle W=W_{ii}=-{\frac {1}{2}}\int _{V}\rho \Phi d\mathbf {x} =\int _{V}\rho x_{i}{\frac {\partial \Phi }{\partial x_{i}}}d\mathbf {x} }
Hence Chandrasekhar tensor can be viewed as the generalization of potential energy.
Chandrasekhar's Proof
Consider a matter of volume
V
{\displaystyle V}
with density
ρ
(
x
)
{\displaystyle \rho (\mathbf {x} )}
. Thus
W
i
j
=
−
1
2
∫
V
ρ
Φ
i
j
d
x
=
−
1
2
G
∫
V
∫
V
ρ
(
x
)
ρ
(
x
′
)
(
x
i
−
x
i
′
)
(
x
j
−
x
j
′
)
|
x
−
x
′
|
3
d
x
′
d
x
=
−
G
∫
V
∫
V
ρ
(
x
)
ρ
(
x
′
)
x
i
(
x
j
−
x
j
′
)
|
x
−
x
′
|
3
d
x
d
x
′
=
G
∫
V
d
x
ρ
(
x
)
x
i
∂
∂
x
j
∫
V
d
x
′
ρ
(
x
′
)
|
x
−
x
′
|
=
∫
V
ρ
x
i
∂
Φ
∂
x
j
d
x
{\displaystyle {\begin{aligned}W_{ij}&=-{\frac {1}{2}}\int _{V}\rho \Phi _{ij}d\mathbf {x} \\&=-{\frac {1}{2}}G\int _{V}\int _{V}\rho (\mathbf {x} )\rho (\mathbf {x'} ){\frac {(x_{i}-x_{i}')(x_{j}-x_{j}')}{|\mathbf {x} -\mathbf {x'} |^{3}}}d\mathbf {x'} d\mathbf {x} \\&=-G\int _{V}\int _{V}\rho (\mathbf {x} )\rho (\mathbf {x'} ){\frac {x_{i}(x_{j}-x_{j}')}{|\mathbf {x} -\mathbf {x'} |^{3}}}d\mathbf {x} d\mathbf {x'} \\&=G\int _{V}d\mathbf {x} \rho (\mathbf {x} )x_{i}{\frac {\partial }{\partial x_{j}}}\int _{V}d\mathbf {x'} {\frac {\rho (\mathbf {x'} )}{|\mathbf {x} -\mathbf {x'} |}}\\&=\int _{V}\rho x_{i}{\frac {\partial \Phi }{\partial x_{j}}}d\mathbf {x} \end{aligned}}}
Chandrasekhar tensor in terms of scalar potential
The scalar potential is defined as
χ
(
x
)
=
−
G
∫
V
ρ
(
x
′
)
|
x
−
x
′
|
d
x
′
{\displaystyle \chi (\mathbf {x} )=-G\int _{V}\rho (\mathbf {x'} )|\mathbf {x} -\mathbf {x'} |d\mathbf {x'} }
then Chandrasekhar proves that
W
i
j
=
δ
i
j
W
+
∂
2
χ
∂
x
i
∂
x
j
{\displaystyle W_{ij}=\delta _{ij}W+{\frac {\partial ^{2}\chi }{\partial x_{i}\partial x_{j}}}}
Setting
i
=
j
{\displaystyle i=j}
we get
∇
2
χ
=
−
2
W
{\displaystyle \nabla ^{2}\chi =-2W}
, taking Laplacian again, we get
∇
4
χ
=
8
π
G
ρ
{\displaystyle \nabla ^{4}\chi =8\pi G\rho }
.
See also
References
Chandrasekhar, S; Lebovitz NR (1962). "The Potentials and the Superpotentials of Homogeneous Ellipsoids" (PDF). Ap. J. 136: 1037–1047. Bibcode :1962ApJ...136.1037C . doi :10.1086/147456 . Retrieved March 24, 2012.
Chandrasekhar, S; Fermi E (1953). "Problems of Gravitational Stability in the Presence of a Magnetic Field" (PDF). Ap. J. 118: 116. Bibcode :1953ApJ...118..116C . doi :10.1086/145732 . Retrieved March 24, 2012.
Chandrasekhar, Subrahmanyan. Ellipsoidal figures of equilibrium. Vol. 9. New Haven: Yale University Press, 1969.
Binney, James; Tremaine, Scott (30 October 2011). Galactic Dynamics (Second ed.). Princeton University Press . pp. 59–60. ISBN 978-1400828722 .
Chandrasekhar, Subrahmanyan. Ellipsoidal figures of equilibrium. Vol. 9. New Haven: Yale University Press, 1969.
Categories :
Chandrasekhar potential energy tensor
Add topic
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑