(Redirected from Classifying space for SU )
In mathematics , the classifying space
BSU
(
n
)
{\displaystyle \operatorname {BSU} (n)}
for the special unitary group
SU
(
n
)
{\displaystyle \operatorname {SU} (n)}
is the base space of the universal
SU
(
n
)
{\displaystyle \operatorname {SU} (n)}
principal bundle
ESU
(
n
)
→
BSU
(
n
)
{\displaystyle \operatorname {ESU} (n)\rightarrow \operatorname {BSU} (n)}
. This means that
SU
(
n
)
{\displaystyle \operatorname {SU} (n)}
principal bundles over a CW complex up to isomorphism are in bijection with homotopy classes of its continuous maps into
BSU
(
n
)
{\displaystyle \operatorname {BSU} (n)}
. The isomorphism is given by pullback .
Definition
There is a canonical inclusion of complex oriented Grassmannians given by
Gr
~
n
(
C
k
)
↪
Gr
~
n
(
C
k
+
1
)
,
V
↦
V
×
{
0
}
{\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k})\hookrightarrow {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k+1}),V\mapsto V\times \{0\}}
. Its colimit is:
BSU
(
n
)
:=
Gr
~
n
(
C
∞
)
:=
lim
n
→
∞
Gr
~
n
(
C
k
)
.
{\displaystyle \operatorname {BSU} (n):={\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{\infty }):=\lim _{n\rightarrow \infty }{\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k}).}
Since real oriented Grassmannians can be expressed as a homogeneous space by:
Gr
~
n
(
C
k
)
=
SU
(
n
+
k
)
/
(
SU
(
n
)
×
SU
(
k
)
)
{\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k})=\operatorname {SU} (n+k)/(\operatorname {SU} (n)\times \operatorname {SU} (k))}
the group structure carries over to
BSU
(
n
)
{\displaystyle \operatorname {BSU} (n)}
.
Simplest classifying spaces
Since
SU
(
1
)
≅
1
{\displaystyle \operatorname {SU} (1)\cong 1}
is the trivial group ,
BSU
(
1
)
≅
{
∗
}
{\displaystyle \operatorname {BSU} (1)\cong \{*\}}
is the trivial topological space.
Since
SU
(
2
)
≅
Sp
(
1
)
{\displaystyle \operatorname {SU} (2)\cong \operatorname {Sp} (1)}
, one has
BSU
(
2
)
≅
BSp
(
1
)
≅
H
P
∞
{\displaystyle \operatorname {BSU} (2)\cong \operatorname {BSp} (1)\cong \mathbb {H} P^{\infty }}
.
Classification of principal bundles
Given a topological space
X
{\displaystyle X}
the set of
SU
(
n
)
{\displaystyle \operatorname {SU} (n)}
principal bundles on it up to isomorphism is denoted
Prin
SU
(
n
)
(
X
)
{\displaystyle \operatorname {Prin} _{\operatorname {SU} (n)}(X)}
. If
X
{\displaystyle X}
is a CW complex , then the map:
[
X
,
BSU
(
n
)
]
→
Prin
SU
(
n
)
(
X
)
,
[
f
]
↦
f
∗
ESU
(
n
)
{\displaystyle \rightarrow \operatorname {Prin} _{\operatorname {SU} (n)}(X),\mapsto f^{*}\operatorname {ESU} (n)}
is bijective .
Cohomology ring
The cohomology ring of
BSU
(
n
)
{\displaystyle \operatorname {BSU} (n)}
with coefficients in the ring
Z
{\displaystyle \mathbb {Z} }
of integers is generated by the Chern classes :
H
∗
(
BSU
(
n
)
;
Z
)
=
Z
[
c
2
,
…
,
c
n
]
.
{\displaystyle H^{*}(\operatorname {BSU} (n);\mathbb {Z} )=\mathbb {Z} .}
Infinite classifying space
The canonical inclusions
SU
(
n
)
↪
SU
(
n
+
1
)
{\displaystyle \operatorname {SU} (n)\hookrightarrow \operatorname {SU} (n+1)}
induce canonical inclusions
BSU
(
n
)
↪
BSU
(
n
+
1
)
{\displaystyle \operatorname {BSU} (n)\hookrightarrow \operatorname {BSU} (n+1)}
on their respective classifying spaces. Their respective colimits are denoted as:
SU
:=
lim
n
→
∞
SU
(
n
)
;
{\displaystyle \operatorname {SU} :=\lim _{n\rightarrow \infty }\operatorname {SU} (n);}
BSU
:=
lim
n
→
∞
BSU
(
n
)
.
{\displaystyle \operatorname {BSU} :=\lim _{n\rightarrow \infty }\operatorname {BSU} (n).}
BSU
{\displaystyle \operatorname {BSU} }
is indeed the classifying space of
SU
{\displaystyle \operatorname {SU} }
.
See also
Literature
External links
References
"universal principal bundle" . nLab . Retrieved 2024-03-14.
Hatcher 02, Example 4D.7.
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑