Misplaced Pages

Classifying space for SU(n)

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Classifying space for SU)

In mathematics, the classifying space BSU ( n ) {\displaystyle \operatorname {BSU} (n)} for the special unitary group SU ( n ) {\displaystyle \operatorname {SU} (n)} is the base space of the universal SU ( n ) {\displaystyle \operatorname {SU} (n)} principal bundle ESU ( n ) BSU ( n ) {\displaystyle \operatorname {ESU} (n)\rightarrow \operatorname {BSU} (n)} . This means that SU ( n ) {\displaystyle \operatorname {SU} (n)} principal bundles over a CW complex up to isomorphism are in bijection with homotopy classes of its continuous maps into BSU ( n ) {\displaystyle \operatorname {BSU} (n)} . The isomorphism is given by pullback.

Definition

There is a canonical inclusion of complex oriented Grassmannians given by Gr ~ n ( C k ) Gr ~ n ( C k + 1 ) , V V × { 0 } {\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k})\hookrightarrow {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k+1}),V\mapsto V\times \{0\}} . Its colimit is:

BSU ( n ) := Gr ~ n ( C ) := lim n Gr ~ n ( C k ) . {\displaystyle \operatorname {BSU} (n):={\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{\infty }):=\lim _{n\rightarrow \infty }{\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k}).}

Since real oriented Grassmannians can be expressed as a homogeneous space by:

Gr ~ n ( C k ) = SU ( n + k ) / ( SU ( n ) × SU ( k ) ) {\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k})=\operatorname {SU} (n+k)/(\operatorname {SU} (n)\times \operatorname {SU} (k))}

the group structure carries over to BSU ( n ) {\displaystyle \operatorname {BSU} (n)} .

Simplest classifying spaces

  • Since SU ( 1 ) 1 {\displaystyle \operatorname {SU} (1)\cong 1} is the trivial group, BSU ( 1 ) { } {\displaystyle \operatorname {BSU} (1)\cong \{*\}} is the trivial topological space.
  • Since SU ( 2 ) Sp ( 1 ) {\displaystyle \operatorname {SU} (2)\cong \operatorname {Sp} (1)} , one has BSU ( 2 ) BSp ( 1 ) H P {\displaystyle \operatorname {BSU} (2)\cong \operatorname {BSp} (1)\cong \mathbb {H} P^{\infty }} .

Classification of principal bundles

Given a topological space X {\displaystyle X} the set of SU ( n ) {\displaystyle \operatorname {SU} (n)} principal bundles on it up to isomorphism is denoted Prin SU ( n ) ( X ) {\displaystyle \operatorname {Prin} _{\operatorname {SU} (n)}(X)} . If X {\displaystyle X} is a CW complex, then the map:

[ X , BSU ( n ) ] Prin SU ( n ) ( X ) , [ f ] f ESU ( n ) {\displaystyle \rightarrow \operatorname {Prin} _{\operatorname {SU} (n)}(X),\mapsto f^{*}\operatorname {ESU} (n)}

is bijective.

Cohomology ring

The cohomology ring of BSU ( n ) {\displaystyle \operatorname {BSU} (n)} with coefficients in the ring Z {\displaystyle \mathbb {Z} } of integers is generated by the Chern classes:

H ( BSU ( n ) ; Z ) = Z [ c 2 , , c n ] . {\displaystyle H^{*}(\operatorname {BSU} (n);\mathbb {Z} )=\mathbb {Z} .}

Infinite classifying space

The canonical inclusions SU ( n ) SU ( n + 1 ) {\displaystyle \operatorname {SU} (n)\hookrightarrow \operatorname {SU} (n+1)} induce canonical inclusions BSU ( n ) BSU ( n + 1 ) {\displaystyle \operatorname {BSU} (n)\hookrightarrow \operatorname {BSU} (n+1)} on their respective classifying spaces. Their respective colimits are denoted as:

SU := lim n SU ( n ) ; {\displaystyle \operatorname {SU} :=\lim _{n\rightarrow \infty }\operatorname {SU} (n);}
BSU := lim n BSU ( n ) . {\displaystyle \operatorname {BSU} :=\lim _{n\rightarrow \infty }\operatorname {BSU} (n).}

BSU {\displaystyle \operatorname {BSU} } is indeed the classifying space of SU {\displaystyle \operatorname {SU} } .

See also

Literature

External links

References

  1. "universal principal bundle". nLab. Retrieved 2024-03-14.
  2. Hatcher 02, Example 4D.7.
Category:
Classifying space for SU(n) Add topic