Misplaced Pages

Computational models in epilepsy

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Computational models in epilepsy mainly focus on describing an electrophysiological manifestation associated with epilepsy called seizures. For this purpose, computational neurosciences use differential equations to reproduce the temporal evolution of the signals recorded experimentally. A book published in 2008, Computational Neuroscience in Epilepsy. summarizes different works done up to this time. The goals of using its models are diverse, from prediction to comprehension of underlying mechanisms.

The crisis phenomenon (seizure) exists and shares certain dynamical properties across different scales and different organisms. It is possible to distinguish different approaches: the phenomenological models focus on the dynamics observed, generally reduced to few dimension it facilitates the study from the point of view of the theory of dynamical systems and more mechanistic models that explain the biophysical interactions underlying seizures. It is also possible to use these approaches to model and analyse the interactions between different regions of the brain (In this case the notion of network plays an important role) and the transition to ictal state. These large-scale approaches have the advantage of being able to be related to the recordings made in humans thanks to electroencephalography (EEG). It offers new directions for clinical research, particularly as an additional tool in the treatment of refractory epilepsy

Other approaches are to use the models to try to understand the mechanisms underlying these seizures using biophysical descriptions from the neuron scale. This makes it possible to understand the role of homeostasis and to understand the link between physical quantities (such as the concentration of potassium for example) and the pathological dynamics observed.

This area of research has evolved rapidly in recent years and continues to show promise for our understanding and treatment of epilepsies for either for direct clinical application in the case of refractory epilepsy or fundamental research to guide experimental works.

References

  1. Computational neuroscience in epilepsy. Ivan Soltesz, Kevin Staley (1st ed.). Amsterdam: Academic. 2008. ISBN 978-0-12-373649-9. OCLC 281558250.{{cite book}}: CS1 maint: others (link)
  2. Lytton, William W. (August 2008). "Computer modelling of epilepsy". Nature Reviews Neuroscience. 9 (8): 626–637. doi:10.1038/nrn2416. ISSN 1471-0048. PMC 2739976. PMID 18594562.
  3. Depannemaecker, Damien; Destexhe, Alain; Jirsa, Viktor; Bernard, Christophe (2021-02-22). "Modeling Seizures: From Single Neurons to Networks". doi:10.20944/preprints202102.0478.v1. {{cite journal}}: Cite journal requires |journal= (help)
  4. Jirsa, Viktor K.; Stacey, William C.; Quilichini, Pascale P.; Ivanov, Anton I.; Bernard, Christophe (2014-06-10). "On the nature of seizure dynamics". Brain. 137 (8): 2210–2230. doi:10.1093/brain/awu133. ISSN 1460-2156. PMC 4107736. PMID 24919973.
  5. Saggio, Maria Luisa; Spiegler, Andreas; Bernard, Christophe; Jirsa, Viktor K. (2017-07-25). "Fast–Slow Bursters in the Unfolding of a High Codimension Singularity and the Ultra-slow Transitions of Classes". The Journal of Mathematical Neuroscience. 7 (1): 7. doi:10.1186/s13408-017-0050-8. ISSN 2190-8567. PMC 5526832. PMID 28744735.
  6. Breakspear, M.; Roberts, J. A.; Terry, J. R.; Rodrigues, S.; Mahant, N.; Robinson, P. A. (2005-11-09). "A Unifying Explanation of Primary Generalized Seizures Through Nonlinear Brain Modeling and Bifurcation Analysis". Cerebral Cortex. 16 (9): 1296–1313. doi:10.1093/cercor/bhj072. ISSN 1460-2199. PMID 16280462.
  7. Terry, John R.; Benjamin, Oscar; Richardson, Mark P. (2012). "Seizure generation: The role of nodes and networks". Epilepsia. 53 (9): e166 – e169. doi:10.1111/j.1528-1167.2012.03560.x. ISSN 1528-1167. PMID 22709380. S2CID 25085531.
  8. Wendling, Fabrice; Hernandez, Alfredo; Bellanger, Jean-Jacques; Chauvel, Patrick; Bartolomei, Fabrice (October 2005). "Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG". Journal of Clinical Neurophysiology. 22 (5): 343–356. ISSN 0736-0258. PMC 2443706. PMID 16357638.
  9. Jirsa, V.K.; Proix, T.; Perdikis, D.; Woodman, M.M.; Wang, H.; Gonzalez-Martinez, J.; Bernard, C.; Bénar, C.; Guye, M.; Chauvel, P.; Bartolomei, F. (2017-01-15). "The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread". NeuroImage. 145 (Pt B): 377–388. doi:10.1016/j.neuroimage.2016.04.049. ISSN 1053-8119. PMID 27477535. S2CID 36510741.
  10. Khambhati, Ankit N.; Davis, Kathryn A.; Lucas, Timothy H.; Litt, Brian; Bassett, Danielle S. (September 2016). "Virtual Cortical Resection Reveals Push-Pull Network Control Preceding Seizure Evolution". Neuron. 91 (5): 1170–1182. doi:10.1016/j.neuron.2016.07.039. PMC 5017915. PMID 27568515.
  11. Depannemaecker, Damien; Ivanov, Anton; Lillo, Davide; Spek, Len; Bernard, Christophe; Jirsa, Viktor (2020-10-23). "A unified physiological framework of transitions between seizures, sustained ictal activity and depolarization block at the single neuron level". bioRxiv 10.1101/2020.10.23.352021.
  12. Cressman, John R.; Ullah, Ghanim; Ziburkus, Jokubas; Schiff, Steven J.; Barreto, Ernest (April 2009). "The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics". Journal of Computational Neuroscience. 26 (2): 159–170. doi:10.1007/s10827-008-0132-4. ISSN 0929-5313. PMC 2704057. PMID 19169801.
  13. Destexhe, A.; Bal, T.; McCormick, D. A.; Sejnowski, T. J. (1996-09-01). "Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices". Journal of Neurophysiology. 76 (3): 2049–2070. doi:10.1152/jn.1996.76.3.2049. ISSN 0022-3077. PMID 8890314.
  14. Almeida, Antônio-Carlos G. De; Rodrigues, Antônio M.; Scorza, Fúlvio A.; Cavalheiro, Esper A.; Teixeira, Hewerson Z.; Duarte, Mário A.; Silveira, Gilcélio A.; Arruda, Emerson Z. (2008). "Mechanistic hypotheses for nonsynaptic epileptiform activity induction and its transition from the interictal to ictal state—Computational simulation". Epilepsia. 49 (11): 1908–1924. doi:10.1111/j.1528-1167.2008.01686.x. ISSN 1528-1167. PMID 18513350. S2CID 12024463.
Categories:
Computational models in epilepsy Add topic