Misplaced Pages

Demiregular tiling

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In geometry, the demiregular tilings are a set of Euclidean tessellations made from 2 or more regular polygon faces. Different authors have listed different sets of tilings. A more systematic approach looking at symmetry orbits are the 2-uniform tilings of which there are 20. Some of the demiregular ones are actually 3-uniform tilings.

20 2-uniform tilings

Grünbaum and Shephard enumerated the full list of 20 2-uniform tilings in Tilings and patterns, 1987:

2-uniform tilings
cmm, 2*22

(4; 3.4)1
cmm, 2*22

(4; 3.4)2
pmm, *2222

(3; 3.4)1
cmm, 2*22

(3; 3.4)2
cmm, 2*22

(3.4.6; (3.6))2
pmm, *2222

(3.4.6; (3.6))1
pmm, *2222

((3.6); 3.6)
p4m, *442

(3.12.12; 3.4.3.12)
p4g, 4*2

(3.4; 3.4.3.4)1
pgg, 2×

(3.4; 3.4.3.4)2
p6m, *632

(3; 3.6)
p6m, *632

(3; 3.6)1
p6, 632

(3; 3.6)2
cmm, 2*22

(3.6; 3.6)
p6m, *632

(3; 3.4.3.4)
p6m, *632

(3.4.6.4; 3.4.3.4)
p6m, *632

(3.4.6.4; 3.4)
p6m, *632

(3.4.6.4; 3.4.6)
p6m, *632

(4.6.12; 3.4.6.4)
p6m, *632

(3; 3.4.12)

Ghyka's list (1946)

Ghyka lists 10 of them with 2 or 3 vertex types, calling them semiregular polymorph partitions.

Plate XXVII
No. 12
4.6.12
3.4.6.4
No. 13
3.4.6.4
3.3.3.4.4
No. 13 bis.
3.4.4.6
3.3.4.3.4
No. 13 ter.
3.4.4.6
3.3.3.4.4
Plate XXIV
No. 13 quatuor.
3.4.6.4
3.3.4.3.4
No. 14
3.4
3
Plate XXVI
No. 14 bis.
3.3.4.3.4
3.3.3.4.4
3
No. 14 ter.
3.4
3
No. 15
3.3.4.12
3
Plate XXV
No. 16
3.3.4.12
3.3.4.3.4
3

Steinhaus's list (1969)

Steinhaus gives 5 examples of non-homogeneous tessellations of regular polygons beyond the 11 regular and semiregular ones. (All of them have 2 types of vertices, while one is 3-uniform.)

2-uniform 3-uniform
Image 85
3.4
3.4.6.4
Image 86
3.4.3.4
3.4.6.4
Image 87
3.3.4.12
3
Image 89
3.4
3.4.3.4
Image 88
3.12.12
3.3.4.12

Critchlow's list (1970)

Critchlow identifies 14 demi-regular tessellations, with 7 being 2-uniform, and 7 being 3-uniform.

He codes letter names for the vertex types, with superscripts to distinguish face orders. He recognizes A, B, C, D, F, and J can't be a part of continuous coverings of the whole plane.

A
(none)
B
(none)
C
(none)
D
(none)
E
(semi)
F
(none)
G
(semi)
H
(semi)
J
(none)
K (2)
(reg)

3.7.42

3.8.24

3.9.18

3.10.15

3.12.12

4.5.20

4.6.12

4.8.8

5.5.10

6
L1
(demi)
L2
(demi)
M1
(demi)
M2
(semi)
N1
(demi)
N2
(semi)
P (3)
(reg)
Q1
(semi)
Q2
(semi)
R
(semi)
S (1)
(reg)

3.3.4.12

3.4.3.12

3.3.6.6

3.6.3.6

3.4.4.6

3.4.6.4

4

3.3.4.3.4

3.3.3.4.4

3.3.3.3.6

3
2-uniforms
1 2 4 6 7 10 14

(3.12.12; 3.4.3.12)

(3; 3.4.12)

(4.6.12; 3.4.6.4)

((3.6); 3.6)

(3.4.6.4; 3.4.3.4)

(3; 3.4.3.4)

(3.4.6.4; 3.4.6)
E+L2 L1+(1) N1+G M1+M2 N2+Q1 Q1+(1) N1+Q2
3-uniforms
3 5 8 9 11 12 13
(3.3.4.3.4; 3.3.4.12, 3.4.3.12) (3; 3.3.4.12; 3.3.4.3.4) (3.3.4.3.4; 3.3.3.4.4, 4.3.4.6) (3, 3.3.4.3.4) (3; 3.3.4.3.4, 3.3.3.4.4) (3; 3.3.4.3.4; 3.3.3.4.4) (3.4.6.4; 3.4.6)
L1+L2+Q1 L1+Q1+(1) N1+Q1+Q2 Q1+(1) Q1+Q2+(1) Q1+Q2+(1) N1+N2
Claimed Tilings and Duals

References

  1. Ghyka (1946) pp. 73-80
  2. Steinhaus, 1969, p.79-82.

External links

Categories:
Demiregular tiling Add topic