Misplaced Pages

Ethane

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Dimethyl) Organic compound (H3C–CH3) This article is about the chemical compound. For the emergency service protocol, see ETHANE. Not to be confused with Ethene, Ethyne, or Methane.
Ethane
Skeletal formula of ethane with all hydrogens and carbons shown
Skeletal formula of ethane with all hydrogens and carbons shown
Molecular geometry of ethane based on rotational spectroscopy.
Skeletal formula of ethane with all implicit carbons shown, and all explicit hydrogens added
Skeletal formula of ethane with all implicit carbons shown, and all explicit hydrogens added
Ball and stick model of ethane
Ball and stick model of ethane
Spacefill model of ethane
Spacefill model of ethane
Names
Preferred IUPAC name Ethane
Systematic IUPAC name Dicarbane (never recommended)
Other names
  • Dimethyl (CH3CH3, Me2 or (CH3)2)
  • Ethyl hydride
Identifiers
CAS Number
3D model (JSmol)
Beilstein Reference 1730716
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.741 Edit this at Wikidata
EC Number
  • 200-814-8
Gmelin Reference 212
MeSH Ethane
PubChem CID
RTECS number
  • KH3800000
UNII
UN number 1035
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C2H6/c1-2/h1-2H3Key: OTMSDBZUPAUEDD-UHFFFAOYSA-N
SMILES
  • CC
Properties
Chemical formula C2H6
Molar mass 30.070 g·mol
Appearance Colorless gas
Odor Odorless
Density
  • 1.3562 kg/m (gas at 0 °C)

544.0 kg/m (liquid at -88,5 °C)
206 kg/m (at critical point 305.322 K)

Melting point −182.8 °C; −296.9 °F; 90.4 K
Boiling point −88.5 °C; −127.4 °F; 184.6 K
Critical point (T, P) 305.32 K (32.17 °C; 89.91 °F) 48.714 bars (4,871.4 kPa)
Solubility in water 56.8 mg/L
Vapor pressure 3.8453 MPa (at 21.1 °C)
Henry's law
constant
 (kH)
19 nmol Pa kg
Acidity (pKa) 50
Basicity (pKb) −36
Conjugate acid Ethanium
Magnetic susceptibility (χ) -37.37·10 cm/mol
Thermochemistry
Heat capacity (C) 52.14± 0.39 J K mol at 298 Kelvin
Std enthalpy of
formation
fH298)
−84 kJ mol
Std enthalpy of
combustion
cH298)
−1561.0–−1560.4 kJ mol
Hazards
GHS labelling:
Pictograms GHS02: Flammable
Signal word Danger
Hazard statements H220, H280
Precautionary statements P210, P410+P403
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g. propaneInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazard SA: Simple asphyxiant gas. E.g. nitrogen, helium
1 4 0SA
Flash point −135 °C (−211 °F; 138 K)
Autoignition
temperature
472 °C (882 °F; 745 K)
Explosive limits 2.9–13%
Safety data sheet (SDS) inchem.org
Related compounds
Related alkanes
Related compounds
Supplementary data page
Ethane (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Ethane (US: /ˈɛθeɪn/ ETH-ayn, UK: /ˈiːθeɪn/ EE-thayn) is a naturally occurring organic chemical compound with chemical formula C
2H
6. At standard temperature and pressure, ethane is a colorless, odorless gas. Like many hydrocarbons, ethane is isolated on an industrial scale from natural gas and as a petrochemical by-product of petroleum refining. Its chief use is as feedstock for ethylene production. The ethyl group is formally, although rarely practically, derived from ethane.

History

Ethane was first synthesised in 1834 by Michael Faraday, applying electrolysis of a potassium acetate solution. He mistook the hydrocarbon product of this reaction for methane and did not investigate it further. The process is now called Kolbe electrolysis:

CH3COO → CH3• + CO2 + e
CH3• + •CH3 → C2H6

During the period 1847–1849, in an effort to vindicate the radical theory of organic chemistry, Hermann Kolbe and Edward Frankland produced ethane by the reductions of propionitrile (ethyl cyanide) and ethyl iodide with potassium metal, and, as did Faraday, by the electrolysis of aqueous acetates. They mistook the product of these reactions for the methyl radical (CH3), of which ethane (C2H6) is a dimer.

This error was corrected in 1864 by Carl Schorlemmer, who showed that the product of all these reactions was in fact ethane. Ethane was discovered dissolved in Pennsylvanian light crude oil by Edmund Ronalds in 1864.

Properties

At standard temperature and pressure, ethane is a colorless, odorless gas. It has a boiling point of −88.5 °C (−127.3 °F) and melting point of −182.8 °C (−297.0 °F). Solid ethane exists in several modifications. On cooling under normal pressure, the first modification to appear is a plastic crystal, crystallizing in the cubic system. In this form, the positions of the hydrogen atoms are not fixed; the molecules may rotate freely around the long axis. Cooling this ethane below ca. 89.9 K (−183.2 °C; −297.8 °F) changes it to monoclinic metastable ethane II (space group P 21/n). Ethane is only very sparingly soluble in water.

The bond parameters of ethane have been measured to high precision by microwave spectroscopy and electron diffraction: rC−C = 1.528(3) Å, rC−H = 1.088(5) Å, and ∠CCH = 111.6(5)° by microwave and rC−C = 1.524(3) Å, rC−H = 1.089(5) Å, and ∠CCH = 111.9(5)° by electron diffraction (the numbers in parentheses represents the uncertainties in the final digits).

Ethane (shown in Newman projection) barrier to rotation about the carbon-carbon bond. The curve is potential energy as a function of rotational angle. Energy barrier is 12 kJ/mol or about 2.9 kcal/mol.

Rotating a molecular substructure about a twistable bond usually requires energy. The minimum energy to produce a 360° bond rotation is called the rotational barrier.

Ethane gives a classic, simple example of such a rotational barrier, sometimes called the "ethane barrier". Among the earliest experimental evidence of this barrier (see diagram at left) was obtained by modelling the entropy of ethane. The three hydrogens at each end are free to pinwheel about the central carbon–carbon bond when provided with sufficient energy to overcome the barrier. The physical origin of the barrier is still not completely settled, although the overlap (exchange) repulsion between the hydrogen atoms on opposing ends of the molecule is perhaps the strongest candidate, with the stabilizing effect of hyperconjugation on the staggered conformation contributing to the phenomenon. Theoretical methods that use an appropriate starting point (orthogonal orbitals) find that hyperconjugation is the most important factor in the origin of the ethane rotation barrier.

As far back as 1890–1891, chemists suggested that ethane molecules preferred the staggered conformation with the two ends of the molecule askew from each other.

Atmospheric and extraterrestrial

A photograph of Titan's northern latitudes. The dark features are hydrocarbon lakes containing ethane

Ethane occurs as a trace gas in the Earth's atmosphere, currently having a concentration at sea level of 0.5 ppb. Global ethane quantities have varied over time, likely due to flaring at natural gas fields. Global ethane emission rates declined from 1984 to 2010, though increased shale gas production at the Bakken Formation in the U.S. has arrested the decline by half.

Although ethane is a greenhouse gas, it is much less abundant than methane, has a lifetime of only a few months compared to over a decade, and is also less efficient at absorbing radiation relative to mass. In fact, ethane's global warming potential largely results from its conversion in the atmosphere to methane. It has been detected as a trace component in the atmospheres of all four giant planets, and in the atmosphere of Saturn's moon Titan.

Atmospheric ethane results from the Sun's photochemical action on methane gas, also present in these atmospheres: ultraviolet photons of shorter wavelengths than 160 nm can photo-dissociate the methane molecule into a methyl radical and a hydrogen atom. When two methyl radicals recombine, the result is ethane:

CH4  →  CH3• + •H
CH3• + •CH3  →  C2H6

In Earth's atmosphere, hydroxyl radicals convert ethane to methanol vapor with a half-life of around three months.

It is suspected that ethane produced in this fashion on Titan rains back onto the moon's surface, and over time has accumulated into hydrocarbon seas covering much of the moon's polar regions. In mid-2005, the Cassini orbiter discovered Ontario Lacus in Titan's south polar regions. Further analysis of infrared spectroscopic data presented in July 2008 provided additional evidence for the presence of liquid ethane in Ontario Lacus. Several significantly larger hydrocarbon lakes, Ligeia Mare and Kraken Mare being the two largest, were discovered near Titan's north pole using radar data gathered by Cassini. These lakes are believed to be filled primarily by a mixture of liquid ethane and methane.

In 1996, ethane was detected in Comet Hyakutake, and it has since been detected in some other comets. The existence of ethane in these distant solar system bodies may implicate ethane as a primordial component of the solar nebula from which the sun and planets are believed to have formed.

In 2006, Dale Cruikshank of NASA/Ames Research Center (a New Horizons co-investigator) and his colleagues announced the spectroscopic discovery of ethane on Pluto's surface.

Chemistry

The reactions of ethane involve chiefly free radical reactions. Ethane can react with the halogens, especially chlorine and bromine, by free-radical halogenation. This reaction proceeds through the propagation of the ethyl radical:

Cl2  →  2 Cl•
C2H6• + Cl•  →  C2H5• + HCl
C2H5• + Cl2  →  C2H5Cl + Cl•
Cl• + C2H6  →  C2H5• + HCl

The combustion of ethane releases 1559.7 kJ/mol, or 51.9 kJ/g, of heat, and produces carbon dioxide and water according to the chemical equation:

2 C2H6 + 7 O2  →  4 CO2 + 6 H2O + 3120 kJ

Combustion may also occur without an excess of oxygen, yielding carbon monoxide, acetaldehyde, methane, methanol, and ethanol. At higher temperatures, especially in the range 600–900 °C (1,112–1,652 °F), ethylene is a significant product:

2 C2H6 + O2 → 2 C2H4 + 2 H2O

Such oxidative dehydrogenation reactions are relevant to the production of ethylene.

Production

After methane, ethane is the second-largest component of natural gas. Natural gas from different gas fields varies in ethane content from less than 1% to more than 6% by volume. Prior to the 1960s, ethane and larger molecules were typically not separated from the methane component of natural gas, but simply burnt along with the methane as a fuel. Today, ethane is an important petrochemical feedstock and is separated from the other components of natural gas in most well-developed gas fields. Ethane can also be separated from petroleum gas, a mixture of gaseous hydrocarbons produced as a byproduct of petroleum refining.

Ethane is most efficiently separated from methane by liquefying it at cryogenic temperatures. Various refrigeration strategies exist: the most economical process presently in wide use employs a turboexpander, and can recover more than 90% of the ethane in natural gas. In this process, chilled gas is expanded through a turbine, reducing the temperature to approximately −100 °C (−148 °F). At this low temperature, gaseous methane can be separated from the liquefied ethane and heavier hydrocarbons by distillation. Further distillation then separates ethane from the propane and heavier hydrocarbons.

Usage

The chief use of ethane is the production of ethylene (ethene) by steam cracking. Steam cracking of ethane is fairly selective for ethylene, while the steam cracking of heavier hydrocarbons yields a product mixture poorer in ethylene and richer in heavier alkenes (olefins), such as propene (propylene) and butadiene, and in aromatic hydrocarbons.

Ehane has been investigated as a feedstock for other commodity chemicals. Oxidative chlorination of ethane has long appeared to be a potentially more economical route to vinyl chloride than ethylene chlorination. Many patent exist on this theme, but poor selectivity for vinyl chloride and corrosive reaction conditions have discouraged the commercialization of most of them. Presently, INEOS operates a 1000 t/a (tonnes per annum) ethane-to-vinyl chloride pilot plant at Wilhelmshaven in Germany.

SABIC operates a 34,000 t/a plant at Yanbu to produce acetic acid by ethane oxidation. The economic viability of this process may rely on the low cost of ethane near Saudi oil fields, and it may not be competitive with methanol carbonylation elsewhere in the world.

Ethane can be used as a refrigerant in cryogenic refrigeration systems.

In the laboratory

On a much smaller scale, in scientific research, liquid ethane is used to vitrify water-rich samples for cryo-electron microscopy. A thin film of water quickly immersed in liquid ethane at −150 °C or colder freezes too quickly for water to crystallize. Slower freezing methods can generate cubic ice crystals, which can disrupt soft structures by damaging the samples and reduce image quality by scattering the electron beam before it can reach the detector.

Health and safety

At room temperature, ethane is an extremely flammable gas. When mixed with air at 3.0%–12.5% by volume, it forms an explosive mixture.

Ethane is not a carcinogen.

See also

References

  1. International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 133. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4. The saturated unbranched acyclic hydrocarbons C2H6, C3H8, and C4H10 have the retained names ethane, propane, and butane, respectively.
  2. IUPAC 2014, p. 4. "Similarly, the retained names 'ethane', 'propane', and 'butane' were never replaced by systematic names 'dicarbane', 'tricarbane', and 'tetracarbane' as recommended for analogues of silane, 'disilane'; phosphane, 'triphosphane'; and sulfane, 'tetrasulfane'."
  3. "Ethane – Compound Summary". PubChem Compound. US: National Center for Biotechnology Information. 16 September 2004. Retrieved 7 December 2011.
  4. Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton, Florida: CRC Press. p. 8.88. ISBN 0-8493-0486-5.
  5. "Ethane". webbook.nist.gov. National Institute of Standards and Technology. Retrieved 2024-05-16.
  6. Faraday, Michael (1834). "Experimental researches in electricity: Seventh series". Philosophical Transactions. 124: 77–122. Bibcode:1834RSPT..124...77F. doi:10.1098/rstl.1834.0008. S2CID 116224057.
  7. Kolbe, Hermann; Frankland, Edward (1849). "On the products of the action of potassium on cyanide of ethyl". Journal of the Chemical Society. 1: 60–74. doi:10.1039/QJ8490100060.
  8. Frankland, Edward (1850). "On the isolation of the organic radicals". Journal of the Chemical Society. 2 (3): 263–296. doi:10.1039/QJ8500200263.
  9. Schorlemmer, Carl (1864). "Ueber die Identität des Aethylwasserstoffs und des Methyls". Annalen der Chemie und Pharmacie. 132 (2): 234–238. doi:10.1002/jlac.18641320217.
  10. Roscoe, H.E.; Schorlemmer, C. (1881). Treatise on Chemistry. Vol. 3. Macmillan. pp. 144–145.
  11. Watts, H. (1868). Dictionary of Chemistry. Vol. 4. p. 385.
  12. Van Nes, G.J.H.; Vos, A. (1978). "Single-crystal structures and electron density distributions of ethane, ethylene and acetylene. I. Single-crystal X-ray structure determinations of two modifications of ethane" (PDF). Acta Crystallographica Section B. 34 (6): 1947. Bibcode:1978AcCrB..34.1947V. doi:10.1107/S0567740878007037. S2CID 55183235.
  13. "Ethane as a solid". Retrieved 2019-12-10.
  14. Harmony, Marlin D. (1990-11-15). "The equilibrium carbon–carbon single-bond length in ethane". The Journal of Chemical Physics. 93 (10): 7522–7523. Bibcode:1990JChPh..93.7522H. doi:10.1063/1.459380. ISSN 0021-9606.
  15. J, McMurry (2012). Organic chemistry (8 ed.). Belmont, CA: Brooks. p. 95. ISBN 9780840054449.
  16. Kemp, J. D.; Pitzer, Kenneth S. (1937). "The Entropy of Ethane and the Third Law of Thermodynamics. Hindered Rotation of Methyl Groups". Journal of the American Chemical Society. 59 (2): 276. doi:10.1021/ja01281a014.
  17. Ercolani, G. (2005). "Determination of the Rotational Barrier in Ethane by Vibrational Spectroscopy and Statistical Thermodynamics". J. Chem. Educ. 82 (11): 1703–1708. Bibcode:2005JChEd..82.1703E. doi:10.1021/ed082p1703.
  18. Pitzer, R.M. (1983). "The Barrier to Internal Rotation in Ethane". Acc. Chem. Res. 16 (6): 207–210. doi:10.1021/ar00090a004.
  19. Mo, Y.; Wu, W.; Song, L.; Lin, M.; Zhang, Q.; Gao, J. (2004). "The Magnitude of Hyperconjugation in Ethane: A Perspective from Ab Initio Valence Bond Theory". Angew. Chem. Int. Ed. 43 (15): 1986–1990. doi:10.1002/anie.200352931. PMID 15065281.
  20. Pophristic, V.; Goodman, L. (2001). "Hyperconjugation not steric repulsion leads to the staggered structure of ethane". Nature. 411 (6837): 565–8. Bibcode:2001Natur.411..565P. doi:10.1038/35079036. PMID 11385566. S2CID 205017635.
  21. Schreiner, P. R. (2002). "Teaching the right reasons: Lessons from the mistaken origin of the rotational barrier in ethane". Angewandte Chemie International Edition. 41 (19): 3579–81, 3513. doi:10.1002/1521-3773(20021004)41:19<3579::AID-ANIE3579>3.0.CO;2-S. PMID 12370897.
  22. Bischoff, CA (1890). "Ueber die Aufhebung der freien Drehbarkeit von einfach verbundenen Kohlenstoffatomen". Chem. Ber. 23: 623. doi:10.1002/cber.18900230197.
  23. Bischoff, CA (1891). "Theoretische Ergebnisse der Studien in der Bernsteinsäuregruppe". Chem. Ber. 24: 1074–1085. doi:10.1002/cber.189102401195.
  24. Bischoff, CA (1891). "Die dynamische Hypothese in ihrer Anwendung auf die Bernsteinsäuregruppe". Chem. Ber. 24: 1085–1095. doi:10.1002/cber.189102401196.
  25. Bischoff, C.A.; Walden, P. (1893). "Die Anwendung der dynamischen Hypothese auf Ketonsäurederivate". Berichte der Deutschen Chemischen Gesellschaft. 26 (2): 1452. doi:10.1002/cber.18930260254.
  26. "Trace gases (archived)". Atmosphere.mpg.de. Archived from the original on 2008-12-22. Retrieved 2011-12-08.
  27. ^ Simpson, Isobel J.; Sulbaek Andersen, Mads P.; Meinardi, Simone; Bruhwiler, Lori; Blake, Nicola J.; Helmig, Detlev; Rowland, F. Sherwood; Blake, Donald R. (2012). "Long-term decline of global atmospheric ethane concentrations and implications for methane". Nature. 488 (7412): 490–494. Bibcode:2012Natur.488..490S. doi:10.1038/nature11342. PMID 22914166. S2CID 4373714.
  28. Kort, E. A.; Smith, M. L.; Murray, L. T.; Gvakharia, A.; Brandt, A. R.; Peischl, J.; Ryerson, T. B.; Sweeney, C.; Travis, K. (2016). "Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift". Geophysical Research Letters. 43 (9): 4617–4623. Bibcode:2016GeoRL..43.4617K. doi:10.1002/2016GL068703. hdl:2027.42/142509.
  29. "One oil field a key culprit in global ethane gas increase". University of Michigan. April 26, 2016.
  30. ^ Aydin, Kamil Murat; Williams, M.B.; Saltzman, E.S. (April 2007). "Feasibility of reconstructing paleoatmospheric records of selected alkanes, methyl halides, and sulfur gases from Greenland ice cores". Journal of Geophysical Research. 112 (D7). Bibcode:2007JGRD..112.7312A. doi:10.1029/2006JD008027.
  31. Hodnebrog, Øivind; Dalsøren, Stig B.; Myrhe, Gunnar (2018). "Lifetimes, direct and indirect radiative forcing, and global warming potentials of ethane (C2H6), propane (C3H8), and butane (C4H10)". Atmospheric Science Letters. 19 (2). Bibcode:2018AtScL..19E.804H. doi:10.1002/asl.804.
  32. Brown, Bob; et al. (2008). "NASA Confirms Liquid Lake on Saturn Moon". NASA Jet Propulsion Laboratory. Archived from the original on 2011-06-05. Retrieved 2008-07-30.
  33. Brown, R. H.; Soderblom, L. A.; Soderblom, J. M.; Clark, R. N.; Jaumann, R.; Barnes, J. W.; Sotin, C.; Buratti, B.; et al. (2008). "The identification of liquid ethane in Titan's Ontario Lacus". Nature. 454 (7204): 607–10. Bibcode:2008Natur.454..607B. doi:10.1038/nature07100. PMID 18668101. S2CID 4398324.
  34. Mumma, Michael J.; et al. (1996). "Detection of Abundant Ethane and Methane, Along with Carbon Monoxide and Water, in Comet C/1996 B2 Hyakutake: Evidence for Interstellar Origin". Science. 272 (5266): 1310–1314. Bibcode:1996Sci...272.1310M. doi:10.1126/science.272.5266.1310. PMID 8650540. S2CID 27362518.
  35. Stern, A. (November 1, 2006). "Making Old Horizons New". The PI's Perspective. Johns Hopkins University Applied Physics Laboratory. Archived from the original on August 28, 2008. Retrieved 2007-02-12.
  36. Dreher, Eberhard-Ludwig; Torkelson, Theodore R.; Beutel, Klaus K. (2011). "Chlorethanes and Chloroethylenes". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.o06_o01. ISBN 978-3-527-30385-4.
  37. Najari, Sara; Saeidi, Samrand; Concepcion, Patricia; Dionysiou, Dionysios D.; Bhargava, Suresh K.; Lee, Adam F.; Wilson, Karen (2021). "Oxidative dehydrogenation of ethane: Catalytic and mechanistic aspects and future trends". Chemical Society Reviews. 50 (7): 4564–4605. doi:10.1039/D0CS01518K. PMID 33595011. S2CID 231946397.
  38. Ramkumar, K.S. (26 May 2005). "SABIC's Acetic Acid Plant Comes on Stream". Arab News. Archived from the original on 9 June 2013. Retrieved 4 July 2024.
  39. Cavani, Fabrizio; Ballarini, Nicola (2009). Mizuno, Noritaka (ed.). Modern Heterogeneous Oxidation Catalysis. Wiley. p. 291. ISBN 978-3-527-62755-4. Retrieved 4 July 2024.
  40. Vallero, Daniel (June 7, 2010). "Cancer Slope Factors". Environmental Biotechnology: A Biosystems Approach. Academic Press. p. 641. doi:10.1016/B978-0-12-375089-1.10014-5. ISBN 9780123750891.

External links

Alkanes
Binary compounds of hydrogen
Alkali metal
(Group 1) hydrides
Alkaline (Group 2)
earth hydrides
Monohydrides
Dihydrides
Group 13
hydrides
Boranes
Alanes
Gallanes
Indiganes
Thallanes
Nihonanes (predicted)
  • NhH
  • NhH3
  • Nh2H6
  • NhH5
Group 14 hydrides
Hydrocarbons
Silanes
Silenes
Silynes
Germanes
Stannanes
Plumbanes
Flerovanes (predicted)
  • FlH
  • FlH2
  • FlH4
Pnictogen
(Group 15) hydrides
Azanes
Azenes
Phosphanes
Phosphenes
Arsanes
Stibanes
Bismuthanes
Moscovanes
Hydrogen
chalcogenides
(Group 16 hydrides)
Polyoxidanes
  • H2O
  • H2O2
  • H2O3
  • H2O4
  • H2O5
  • more...
  • Polysulfanes
    Selanes
    Tellanes
    Polanes
    Livermoranes
    Hydrogen halides
    (Group 17 hydrides)
  • HF
  • HCl
  • HBr
  • HI
  • HAt
  • HTs (predicted)
  • Transition
    metal hydrides
    Lanthanide hydrides
    Actinide hydrides
    Exotic matter hydrides
    Categories:
    Ethane Add topic