Misplaced Pages

Dirichlet energy

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Dirichlet's energy) A mathematical measure of a function's variability

In mathematics, the Dirichlet energy is a measure of how variable a function is. More abstractly, it is a quadratic functional on the Sobolev space H. The Dirichlet energy is intimately connected to Laplace's equation and is named after the German mathematician Peter Gustav Lejeune Dirichlet.

Definition

Given an open set Ω ⊆ R and a function u : Ω → R the Dirichlet energy of the function u is the real number

E [ u ] = 1 2 Ω u ( x ) 2 d x , {\displaystyle E={\frac {1}{2}}\int _{\Omega }\|\nabla u(x)\|^{2}\,dx,}

where ∇u : Ω → R denotes the gradient vector field of the function u.

Properties and applications

Since it is the integral of a non-negative quantity, the Dirichlet energy is itself non-negative, i.e. E ≥ 0 for every function u.

Solving Laplace's equation Δ u ( x ) = 0 {\displaystyle -\Delta u(x)=0} for all x Ω {\displaystyle x\in \Omega } , subject to appropriate boundary conditions, is equivalent to solving the variational problem of finding a function u that satisfies the boundary conditions and has minimal Dirichlet energy.

Such a solution is called a harmonic function and such solutions are the topic of study in potential theory.

In a more general setting, where Ω ⊆ R is replaced by any Riemannian manifold M, and u : Ω → R is replaced by u : M → Φ for another (different) Riemannian manifold Φ, the Dirichlet energy is given by the sigma model. The solutions to the Lagrange equations for the sigma model Lagrangian are those functions u that minimize/maximize the Dirichlet energy. Restricting this general case back to the specific case of u : Ω → R just shows that the Lagrange equations (or, equivalently, the Hamilton–Jacobi equations) provide the basic tools for obtaining extremal solutions.

See also

  • Dirichlet's principle – Concept in potential theory
  • Dirichlet eigenvalue – fundamental modes of vibration of an idealized drum with a given shapePages displaying wikidata descriptions as a fallback
  • Total variation – Measure of local oscillation behavior
  • Bounded mean oscillation – real-valued function whose mean oscillation is boundedPages displaying wikidata descriptions as a fallback
  • Harmonic map – smooth map that is a critical point of the Dirichlet energy functionalPages displaying wikidata descriptions as a fallback
  • Capacity of a set – In Euclidean space, a measure of that set's "size"

References

  • Lawrence C. Evans (1998). Partial Differential Equations. American Mathematical Society. ISBN 978-0821807729.
Categories:
Dirichlet energy Add topic