Misplaced Pages

Elliptic gamma function

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the elliptic gamma function is a generalization of the q-gamma function, which is itself the q-analog of the ordinary gamma function. It is closely related to a function studied by Jackson (1905), and can be expressed in terms of the triple gamma function. It is given by

Γ ( z ; p , q ) = m = 0 n = 0 1 p m + 1 q n + 1 / z 1 p m q n z . {\displaystyle \Gamma (z;p,q)=\prod _{m=0}^{\infty }\prod _{n=0}^{\infty }{\frac {1-p^{m+1}q^{n+1}/z}{1-p^{m}q^{n}z}}.}

It obeys several identities:

Γ ( z ; p , q ) = 1 Γ ( p q / z ; p , q ) {\displaystyle \Gamma (z;p,q)={\frac {1}{\Gamma (pq/z;p,q)}}\,}
Γ ( p z ; p , q ) = θ ( z ; q ) Γ ( z ; p , q ) {\displaystyle \Gamma (pz;p,q)=\theta (z;q)\Gamma (z;p,q)\,}

and

Γ ( q z ; p , q ) = θ ( z ; p ) Γ ( z ; p , q ) {\displaystyle \Gamma (qz;p,q)=\theta (z;p)\Gamma (z;p,q)\,}

where θ is the q-theta function.

When p = 0 {\displaystyle p=0} , it essentially reduces to the infinite q-Pochhammer symbol:

Γ ( z ; 0 , q ) = 1 ( z ; q ) . {\displaystyle \Gamma (z;0,q)={\frac {1}{(z;q)_{\infty }}}.}

Multiplication Formula

Define

Γ ~ ( z ; p , q ) := ( q ; q ) ( p ; p ) ( θ ( q ; p ) ) 1 z m = 0 n = 0 1 p m + 1 q n + 1 z 1 p m q n + z . {\displaystyle {\tilde {\Gamma }}(z;p,q):={\frac {(q;q)_{\infty }}{(p;p)_{\infty }}}(\theta (q;p))^{1-z}\prod _{m=0}^{\infty }\prod _{n=0}^{\infty }{\frac {1-p^{m+1}q^{n+1-z}}{1-p^{m}q^{n+z}}}.}

Then the following formula holds with r = q n {\displaystyle r=q^{n}} (Felder & Varchenko (2002)).

Γ ~ ( n z ; p , q ) Γ ~ ( 1 / n ; p , r ) Γ ~ ( 2 / n ; p , r ) Γ ~ ( ( n 1 ) / n ; p , r ) = ( θ ( r ; p ) θ ( q ; p ) ) n z 1 Γ ~ ( z ; p , r ) Γ ~ ( z + 1 / n ; p , r ) Γ ~ ( z + ( n 1 ) / n ; p , r ) . {\displaystyle {\tilde {\Gamma }}(nz;p,q){\tilde {\Gamma }}(1/n;p,r){\tilde {\Gamma }}(2/n;p,r)\cdots {\tilde {\Gamma }}((n-1)/n;p,r)=\left({\frac {\theta (r;p)}{\theta (q;p)}}\right)^{nz-1}{\tilde {\Gamma }}(z;p,r){\tilde {\Gamma }}(z+1/n;p,r)\cdots {\tilde {\Gamma }}(z+(n-1)/n;p,r).}

References

Categories: