Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
Triangle center
In Euclidean geometry, the equal detour point is a triangle center denoted by X(176) in Clark Kimberling's Encyclopedia of Triangle Centers. It is characterized by the equal detour property: if one travels from any vertex of a triangle △ABC to another by taking a detour through some inner point P, then the additional distance traveled is constant. This means the following equation has to hold:
The equal detour point is the only point with the equal detour property if and only if the following inequality holds for the angles α, β, γ of △ABC:
If the inequality does not hold, then the isoperimetric point possesses the equal detour property as well.
The equal detour point, isoperimetric point, the incenter and the Gergonne point of a triangle are collinear, that is all four points lie on a common line. Furthermore, they form a harmonic range (see graphic on the right).
The equal detour point is the center of the inner Soddy circle of a triangle and the additional distance travelled by the detour is equal to the diameter of the inner Soddy Circle.
M. Hajja, P. Yff: "The isoperimetric point and the point(s) of equal detour in a triangle". Journal of Geometry, November 2007, Volume 87, Issue 1–2, pp 76–82, https://doi.org/10.1007/s00022-007-1906-y