Misplaced Pages

Euler integral

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Eulerian integral) For the Euler–Poisson integral, see Gaussian integral.

In mathematics, there are two types of Euler integral:

  1. The Euler integral of the first kind is the beta function B ( z 1 , z 2 ) = 0 1 t z 1 1 ( 1 t ) z 2 1 d t = Γ ( z 1 ) Γ ( z 2 ) Γ ( z 1 + z 2 ) {\displaystyle \mathrm {\mathrm {B} } (z_{1},z_{2})=\int _{0}^{1}t^{z_{1}-1}(1-t)^{z_{2}-1}\,dt={\frac {\Gamma (z_{1})\Gamma (z_{2})}{\Gamma (z_{1}+z_{2})}}}
  2. The Euler integral of the second kind is the gamma function Γ ( z ) = 0 t z 1 e t d t {\displaystyle \Gamma (z)=\int _{0}^{\infty }t^{z-1}\,\mathrm {e} ^{-t}\,dt}

For positive integers m and n, the two integrals can be expressed in terms of factorials and binomial coefficients: B ( n , m ) = ( n 1 ) ! ( m 1 ) ! ( n + m 1 ) ! = n + m n m ( n + m n ) = ( 1 n + 1 m ) 1 ( n + m n ) {\displaystyle \mathrm {B} (n,m)={\frac {(n-1)!(m-1)!}{(n+m-1)!}}={\frac {n+m}{nm{\binom {n+m}{n}}}}=\left({\frac {1}{n}}+{\frac {1}{m}}\right){\frac {1}{\binom {n+m}{n}}}} Γ ( n ) = ( n 1 ) ! {\displaystyle \Gamma (n)=(n-1)!}

See also

References

  1. Jeffrey, Alan; Dai, Hui-Hui (2008). Handbook of mathematical formulas and integrals (4th ed.). Amsterdam: Elsevier Academic Press. pp. 234–235. ISBN 978-0-12-374288-9. OCLC 180880679.
  2. Jahnke, Hans Niels (2003). A history of analysis. History of mathematics. Providence (R.I.): American mathematical society. p. 116-117. ISBN 978-0-8218-2623-2.

External links and references


Disambiguation iconIndex of articles associated with the same name This set index article includes a list of related items that share the same name (or similar names).
If an internal link incorrectly led you here, you may wish to change the link to point directly to the intended article. Categories:
Euler integral Add topic