Misplaced Pages

Generalized trigonometry

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Study of triangles in other spaces than the Euclidean plane
Trigonometry
Reference
Laws and theorems
Calculus
Mathematicians

Ordinary trigonometry studies triangles in the Euclidean plane R 2 {\displaystyle \mathbb {R} ^{2}} ⁠. There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions, definitions via differential equations, and definitions using functional equations. Generalizations of trigonometric functions are often developed by starting with one of the above methods and adapting it to a situation other than the real numbers of Euclidean geometry. Generally, trigonometry can be the study of triples of points in any kind of geometry or space. A triangle is the polygon with the smallest number of vertices, so one direction to generalize is to study higher-dimensional analogs of angles and polygons: solid angles and polytopes such as tetrahedrons and n-simplices.

Trigonometry

Higher dimensions

Trigonometric functions

Other

See also

References

  1. Thompson, K.; Dray, T. (2000), "Taxicab angles and trigonometry" (PDF), Pi Mu Epsilon Journal, 11 (2): 87–96, arXiv:1101.2917, Bibcode:2011arXiv1101.2917T
  2. Herranz, Francisco J.; Ortega, Ramón; Santander, Mariano (2000), "Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry", Journal of Physics A, 33 (24): 4525–4551, arXiv:math-ph/9910041, Bibcode:2000JPhA...33.4525H, doi:10.1088/0305-4470/33/24/309, MR 1768742, S2CID 15313035
  3. Liu, Honghai; Coghill, George M. (2005), "Fuzzy Qualitative Trigonometry", 2005 IEEE International Conference on Systems, Man and Cybernetics (PDF), vol. 2, pp. 1291–1296, archived from the original (PDF) on 2011-07-25
  4. Gustafson, K. E. (1999), "A computational trigonometry, and related contributions by Russians Kantorovich, Krein, Kaporin", Вычислительные технологии, 4 (3): 73–83
  5. Karpenkov, Oleg (2008), "Elementary notions of lattice trigonometry", Mathematica Scandinavica, 102 (2): 161–205, arXiv:math/0604129, doi:10.7146/math.scand.a-15058, MR 2437186, S2CID 49911437
  6. Aslaksen, Helmer; Huynh, Hsueh-Ling (1997), "Laws of trigonometry in symmetric spaces", Geometry from the Pacific Rim (Singapore, 1994), Berlin: de Gruyter, pp. 23–36, CiteSeerX 10.1.1.160.1580, MR 1468236
  7. Leuzinger, Enrico (1992), "On the trigonometry of symmetric spaces", Commentarii Mathematici Helvetici, 67 (2): 252–286, doi:10.1007/BF02566499, MR 1161284, S2CID 123684622
  8. Masala, G. (1999), "Regular triangles and isoclinic triangles in the Grassmann manifolds G2(R)", Rendiconti del Seminario Matematico Università e Politecnico di Torino, 57 (2): 91–104, MR 1974445
  9. Richardson, G. (1902-03-01). "The Trigonometry of the Tetrahedron". The Mathematical Gazette. 2 (32): 149–158. doi:10.2307/3603090. JSTOR 3603090. S2CID 125115660.
  10. West, Bruce J.; Bologna, Mauro; Grigolini, Paolo (2003), Physics of fractal operators, Institute for Nonlinear Science, New York: Springer-Verlag, p. 101, doi:10.1007/978-0-387-21746-8, ISBN 0-387-95554-2, MR 1988873
  11. Harkin, Anthony A.; Harkin, Joseph B. (2004), "Geometry of generalized complex numbers", Mathematics Magazine, 77 (2): 118–129, doi:10.1080/0025570X.2004.11953236, JSTOR 3219099, MR 1573734, S2CID 7837108
  12. Yamaleev, Robert M. (2005), "Complex algebras on n-order polynomials and generalizations of trigonometry, oscillator model and Hamilton dynamics" (PDF), Advances in Applied Clifford Algebras, 15 (1): 123–150, doi:10.1007/s00006-005-0007-y, MR 2236628, S2CID 121144869, archived from the original (PDF) on 2011-07-22
  13. Antippa, Adel F. (2003), "The combinatorial structure of trigonometry" (PDF), International Journal of Mathematics and Mathematical Sciences, 2003 (8): 475–500, doi:10.1155/S0161171203106230, MR 1967890
Category: