Misplaced Pages

Germyl

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Germyl
Names
IUPAC name Germanide
Other names Trihydridogermanate(1-)
Trihydridogermanate(IV)
Trihydrogen germanide
Trihydrogermanide
Trihydridogermyl
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
Gmelin Reference 305156
InChI
  • anion: InChI=1S/GeH3/h1H3/q-1Key: SCCCLDWUZODEKG-UHFFFAOYSA-N
  • radical: InChI=1S/GeH3/h1H3Key: WHYHZFHCWGGCOP-UHFFFAOYSA-N
SMILES
  • anion:
  • radical:
Properties
Chemical formula GeH−3
Molar mass 75.654 g·mol
Related compounds
Other cations Silanide (-SiH3);
Stannyl (-SnH3)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

Germyl, trihydridogermanate(1-), trihydrogermanide, trihydridogermyl or according to IUPAC Red Book: germanide is an anion containing germanium bounded with three hydrogens, with formula GeH−3. Germyl is the IUPAC term for the –GeH3 group. For less electropositive elements the bond can be considered covalent rather than ionic as "germanide" indicates. Germanide is the base for germane when it loses a proton.

GeH4 → GeH−3 + H

The first germyl compound to be discovered was sodium germyl. Germane was reacted with sodium dissolved in liquid ammonia to produce sodium germyl. Other alkali metal germyl compounds are known. There are also numerous transition metal complexes that contain germyl as a ligand.

Formation

Alkali metal germyl compounds have been made by reacting germane with the alkali metal dissolved in liquid ammonia, or other non-reactive solvent.

Transition metal complexes cam be made by using lithium aluminium hydride to reduce a trichlorogermyl complex (−GeCl3), which in turn can be made from the transition metal complex chloride and GeCl2.

Salt elimination can be used in a reaction with monochlorogermane and a sodium salt of a transition metal anion:

GeClH3 + NaMn(CO)5 → NaCl + Mn(GeH3)(CO)5.

In the gas phase, the germyl anion GeH−3 can be made from germane by capturing an electron with more than 8 eV of energy:

GeH4 + e → GeH−3 + H

The germyl radical can be produced and immobilised in molecular form by exposing germane to vacuum ultraviolet light in a solid argon matrix. On heating, digermane is formed:

2 GeH3 → GeH3GeH3

Properties

Germyl compounds react with water, so water cannot be used as a solvent. Liquids that have been used as solvents include liquid ammonia, ethyl amine, diglyme, or hexamethylphosphoramide. The choice of solvent depends on the temperature desired, whether alkali metals are going to be dissolved, whether the solvent needs to be distilled, and also if it reacts with the solute.

The bond between the metal ion and the germyl ion may be purely ionic, but may also be bonded via two bridging hydrogen atoms.

The energy to rip a hydrogen atom off germane to make the neutral radical is 82.0 ± 2 kcal/mol (343.1 ± 8.4 kJ/mol). GeH4 → GeH3 + H. Electron affinity for the radical is 1.6 eV: GeH3 + e → GeH3.

Gas phase acidity of germane is ΔG
acid is 350.8 ± 1.3 kcal/mol (1,467.7 ± 5.4 kJ/mol); ΔH
acid is 358.9 kcal/mol (1,502 kJ/mol) for GeH4 → GeH−3 + H.

Both the anion GeH−3 and radical GeH
3 have C3v symmetry, and are shaped as a triangular pyramid with germanium at the top, and three hydrogen atoms at the bottom. In the radical, the H-Ge-H angle is 110°. In the anion the H-Ge-H angle is about 93°.

Reactions

Germyl compounds gradually decompose at room temperature by releasing hydrogen and forming a metal germide.

Germyl compounds react with alkyl halides to substitute the germyl −GeH3 group for the halogen. With aromatic halide compounds, dihalomethanes, or neopentyl haldes they replace the halogen with hydrogen. Organogermanium compounds that can be produced include methyl germane, dimethyl germane, digermyl methane, digermyl ethane, digermyl propane.

The germyl ion reacts with water to yield germane:

GeH−3 + H2O → GeH4 + OH

Sodium germyl reacts with oxygen to form an orthogermanate:

NaGeH3 + O2 → NaOGe(OH)3

This loses water at room temperature.

K reacts with acid to yield 2Ge which has a Mn=Ge=Mn linkage in it.

List

formula name mw system space group unit cell volume density comments ref
LiGeH3
LiGeH
3•2NH
3
NaGeH3 Sodium Trihydrogermanide white
NaGeH
3•2NH
3
NaGeH
3•4.5NH
3
NaGeH
3•6NH
3
P(GeH3)3
KGeH3 cubic a=7.235 2.003 NaCl structure
K(crown-6)(thf)GeH3 451.13 monoclinic Pc a=13.8587 b=9.9670 c=16.9439 β=107.206 Z=4 2235.7 1.34 colourless
K(crown-5)2GeH3 555.23 tetrahedral I4 a=12.685 c=16.985 Z=4 2733.0 1.349 colourless
K(crown-4)2GeH3 467.13 monoclinic C2/c a=40.7694 b=6.623 c=29.6746 β=97.450 Z=16 9144.9 1.357 colourless
K
orthorhombic Pcab a=17.47 b=15.68 c=21.49 Z=8 5886 1.39 yellow
K
monoclinic C2/c a=22.301 b=6.989 c=18.002 β=? Z=4 2788.5 1.45 yellow
Mn(GeH3)(CO)5
Mn(GeH3)(CO)2(PPh(OEt)2)3 pale yellow
Mn(GeH3)(CO)3(PPh(OEt)2)2 610.96 triclinic P1 a=10.118 b=11.060 c=13.009 α=97.859 β=98.612 γ=92.856 Z=2 1422.3 1.427 pale yellow
Mn(GeH3)(CO)2(P(OEt)3)3 pale yellow
Mn(GeH3)(CO)3(P(OEt)3)2 pale yellow
K
triclinic P1 a=6.948 b=9.658 c=11.784 α=89.57 β=77.37 γ=88.05 Z=2 772 1.45
triclinic P1 a=6.958 b=9.658 c=11.784 α=89.57 β=77.37 γ=88.05 Z=2 772 1.46
(GeH3)2Fe(CO)4 digermyltetracarbonyliron mp 71°C colourless
GeH3(H)Fe(CO)4 monogermylhydridotetracarbonyliron mp −30°C colourless
GeH3Fe(C5H5)(CO)2 Germyl(cyclopentadienyl)dicarbonyliron mp 81°C yellow
Fe(CO)4(GeH2GeH3)(GeH3)
Fe(CO)4(GeH3)(GeMe3)
{Fe(CO)4(GeH2)}2 -Fe-Ge-Fe-Ge- ring
K
Co2(CO)7GeH3]
K
K
K
K
monoclinic C2 a=16.855 b=7.098 c=15.189 β=134.71 Z=2 1291.5 1.43 orange yellow
K
monoclinic P21/n a=10.37 b=22.37 c=16.95 β=96.23 Z=4 2910.6 1.74 orange yellow
As(GeH3)3
Rb(crown-6)(thf)GeH3 497.50 monoclinic Cc a=13.8336 b=9.9878 c=16.9893 β=107.417 Z=4 2239.7 1.475 colourless
RbGeH3 a=7.518 2.518
K
K
monoclinic C2/c a=22.25 b=7.021 c=18.545 β=96.14 Z=4 2881 1.5 yellow
Ru(GeH3)(η-C5H5)(PPh3)P(OMe)3 628.12 monoclinic P21/c a=17.932 b=10.067 c=16.375, β=114.508° Z=4 2689.6 1.551 yellow
Ru(GeH3)(η-C5H5)(PPh3)P(OEt)3 yellow
Ru(GeH3)(η-C5H5)(PPh3)PPh(OEt)2 yellow
Ru(GeH3)(η-C9H7)(PPh3)P(OMe)3 yellow
Ru(GeH3)(η-C9H7)(PPh3)P(OEt)3 yellow
Ru(GeH3)(η-C9H7)(PPh3)PPh(OEt)2 yellow
Ru(GeH3)(Tp)(PPh3))P(OEt)3 yellow
Ru(GeH3)(Tp)(PPh3)PPh(OEt)2 yellow
cis-•C6H6 1014.4 triclinic P1 a 12.3464 b 13.2412 c 16.2053, α 90.055° β 98.868° γ 116.164° Z=2 2342.3 1.438
trans-
cis-
trans-
cis-
trans-
cis- 790.38 orthorhombic P212121 a 10.1222 b 18.4327 c 19.425 Z=4 3624.4 1.448
Ru(GeH3)(Cp′)L Cp′=η-C5Me5 L=1,2--1,2-diphenylethane
Ru(GeH3)(Cp′)L Cp′=η-C9H7 L=1,2--1,2-diphenylethane
Sb(GeH3)3 trigermylstibine
Cs(crown-6)2GeH3 734.12 tetrahedral P4/n a=13.2513 c=19.0577 Z=4 3346.5 1.457 colourless
CsGeH3 orthorhombic a=5.1675 b=14.435 c=5.9664 3.111
K
monoclinic C2/c a=22.227 b=7.025 c=18.529 β=96.11 Z=4 2883.2 1.71 yellow
GeH3Re(CO)5 Germylpentacarbonylrhenium colourless mp 53-54°C
GeH22 bis(pentacarbonylrhenium)germane
Re(GeH3)(CO)2(PPh(OEt)2)3 white
Re(GeH3)(CO)3(PPh(OEt)2)2 white
Re(GeH3)(CO)2(P(OEt)3)3 white
Re(GeH3)(CO)3(P(OEt)3)2 white
K
Os(GeH3)(Tp)(PPh3)P(OMe)3 Tp = tris(pyrazolyl)borate white

Related

Germylidyne with formula ≡GeH has a triple bond to the metal atom.

Germylidene with base formula =GeH2 has a double bond to the central metal.

References

  1. Red Book. IUPAC. 2005. p. 298.
  2. ^ Dreyfuss, R. M.; Jolly, W. L. (1 June 1971). "The Reaction of Potassium Germyl with Organic Halides".
  3. ^ Kraus, Charles A.; Carney, E. Seaton (April 1934). "Compounds of Germanium and Hydrogen: Some of their Reactions and Derivatives. I. Preparation of Monogermane. II. Sodium Trihydrogermanides". Journal of the American Chemical Society. 56 (4): 765–768. Bibcode:1934JAChS..56..765K. doi:10.1021/ja01319a002.
  4. ^ Albertin, Gabriele; Antoniutti, Stefano; Castro, Jesús (January 2012). "Synthesis and reactivity of germyl complexes of manganese and rhenium". Journal of Organometallic Chemistry. 696 (26): 4191–4201. doi:10.1016/j.jorganchem.2011.09.014.
  5. ^ Riveros, José M. (December 2002). "Probing the gas-phase ion chemistry of simple Ge systems". International Journal of Mass Spectrometry. 221 (3): 177–190. Bibcode:2002IJMSp.221..177R. doi:10.1016/s1387-3806(02)01025-4.
  6. Smith, George R.; Guillory, William A. (15 February 1972). "Products of the Vacuum-Ultraviolet Photolysis of Germane Isolated in an Argon Matrix". The Journal of Chemical Physics. 56 (4): 1423–1430. Bibcode:1972JChPh..56.1423S. doi:10.1063/1.1677383.
  7. Cradock, Stephen; Gibbon, G. A.; Van Dyke, Charles H. (September 1967). "Germyl chemistry. V. Hexamethylphosphoramide as a solvent for the preparation and reaction of alkali metal derivatives of silane and germane". Inorganic Chemistry. 6 (9): 1751–1752. doi:10.1021/ic50055a034.
  8. ^ Teng, Weijie; Allis, Damian G.; Ruhlandt-Senge, Karin (2007-01-22). "Synthetic, Structural, and Theoretical Investigations of Alkali Metal Germanium Hydrides—Contact Molecules and Separated Ions". Chemistry – A European Journal. 13 (4): 1309–1319. doi:10.1002/chem.200601073. PMID 17133638.
  9. ^ Melzer, Detlef; Weiss, Erwin (February 1984). "GeMn-mehrfachbindungen in [(η5-C5H5)Mn(CO)]2Ge und [(η5-C5H5)Mn(CO)2]3Ge. [(η-C5H5)2V]2GeH2, eine metallverbindung mit einer GeH2-brücke". Journal of Organometallic Chemistry (in German). 263 (1): 67–73. doi:10.1016/0022-328X(84)85011-1.
  10. ^ Thirase, G.; Weiss, E.; Hennig, H. J.; Lechert, H. (October 1975). "Präparative, röntgenographische und1 H-Breitlinienresonanzuntersuchungen an Germylalkaliverbindungen, GeH3 M". Zeitschrift für anorganische und allgemeine Chemie (in German). 417 (3): 221–228. doi:10.1002/zaac.19754170306. ISSN 0044-2313.
  11. Amberger, E.; Boeters, H. D. (1963-09-21). "Darstellung von LiGeH3 · 2NH3 und KSbH2". Angewandte Chemie (in German). 75 (18): 860. Bibcode:1963AngCh..75..860A. doi:10.1002/ange.19630751819.
  12. ^ Chizmeshya, A. V. G.; Ritter, C.; Tolle, J.; Cook, C.; Menéndez, J.; Kouvetakis, J. (2006-12-01). "Fundamental Studies of P(GeH 3 ) 3 , As(GeH 3 ) 3 , and Sb(GeH 3 ) 3 : Practical n -Dopants for New Group IV Semiconductors". Chemistry of Materials. 18 (26): 6266–6277. doi:10.1021/cm061696j. ISSN 0897-4756.
  13. Teal, Gordon K.; Kraus, Charles A. (October 1950). "Compounds of Germanium and Hydrogen. III. Monoalkylgermanes. IV. Potassium Germanyl. V. Electrolysis of Sodium Germanyl 1". Journal of the American Chemical Society. 72 (10): 4706–4709. Bibcode:1950JAChS..72.4706T. doi:10.1021/ja01166a100. ISSN 0002-7863.
  14. ^ Pohlmann, Heinrich; Weiss, Erwin (August 1988). "GeH3-substituierte Carbonylmetallate und Carbonyl(cyclopentadienyl)-metallate mit V, Nb, Cr, Mo, W, Re, Co und Ni Präparative und röntgenographische Untersuchungen". Chemische Berichte (in German). 121 (8): 1427–1433. doi:10.1002/cber.19881210812.
  15. ^ Holloway, Clive E.; Melnik, Milan (January 2002). "Germanium Heterometallic Compounds: Classification and Analysis of Crystallograpphic and Structural Data". Main Group Metal Chemistry. 25 (6). doi:10.1515/MGMC.2002.25.6.331. ISSN 2191-0219. S2CID 100597813.
  16. ^ Melzer, Detlef; Weiss, Erwin (July 1984). "GeH3-Substituierte Carbonylmetallate von Cr, W, Mn und Co. Die Kristallstruktur von [PPh4]Cr(CO)5GeH3]". Chemische Berichte (in German). 117 (7): 2464–2468. doi:10.1002/cber.19841170717.
  17. Gäde, Wolfgang; Weiss, Erwin (July 1981). "Carbonyl(cyclopentadienyl)mangan-Verbindungen mit Mn — GeH3- und Mn — GeCl3-Gruppen. Die Kristallstrukturen von [(CH3)4N][η-CH3C5H4Mn(CO)2GeH3] und η-CH3C5H4Mn(CO)2(GeCl3)2". Chemische Berichte (in German). 114 (7): 2399–2404. doi:10.1002/cber.19811140706.
  18. Gäde, Wolfgang; Weiss, Erwin (July 1981). "Carbonyl(cyclopentadienyl)mangan-Verbindungen mit Mn — GeH3- und Mn — GeCl3-Gruppen. Die Kristallstrukturen von [(CH3)4N][η-CH3C5H4Mn(CO)2GeH3] und η-CH3C5H4Mn(CO)2(GeCl3)2". Chemische Berichte (in German). 114 (7): 2399–2404. doi:10.1002/cber.19811140706.
  19. ^ Stobart, S. R. (1972). "Transition-metal carbonyl derivatives of the Germanes. Part III. Germyl(carbonyl)iron complexes". Journal of the Chemical Society, Dalton Transactions (22): 2442–2447. doi:10.1039/dt9720002442. ISSN 0300-9246.
  20. BONNY, A; MACKAY, K. M.; SIN WONG, F. (1985). "Transition metal carbonyl derivatives of the germanes. XVI: Preparation and properties of the digermane-tetracarbonyliron compounds, [Fe(CO)4(GeH2GeH3)2] and [Fe(CO)4(GeH2GeH3)(GeH3)] with some observations on [Fe(CO)4(GeH3)2]". Journal of Chemical Research. Synopses (2): 40–41. ISSN 0308-2342.
  21. Anema, Skelte G.; Audett (née Christie), Judy A.; Mackay, Kenneth M.; Nicholson, Brian K. (1988). "Transition-metal carbonyl derivatives of the germanes. Part 17. Tetracarbonylgermyl(trimethylgermyl)iron, [Fe(CO) 4 (GeH 3 )(GeMe 3 )], its conversion into [{Fe(CO) 4 (GeH 2 )} 2 ], and hence to [Co 4 Fe 2 Ge 2 (CO) 21 ](characterised by X-ray crystallography)via[Co 4 Fe 2 Ge 2 (CO) 22 ]". J. Chem. Soc., Dalton Trans. (10): 2629–2634. doi:10.1039/DT9880002629. ISSN 0300-9246.
  22. Anema, Skelte G.; Audett (née Christie), Judy A.; Mackay, Kenneth M.; Nicholson, Brian K. (1988). "Transition-metal carbonyl derivatives of the germanes. Part 17. Tetracarbonylgermyl(trimethylgermyl)iron, [Fe(CO) 4 (GeH 3 )(GeMe 3 )], its conversion into [{Fe(CO) 4 (GeH 2 )} 2 ], and hence to [Co 4 Fe 2 Ge 2 (CO) 21 ](characterised by X-ray crystallography)via[Co 4 Fe 2 Ge 2 (CO) 22 ]". J. Chem. Soc., Dalton Trans. (10): 2629–2634. doi:10.1039/DT9880002629. ISSN 0300-9246.
  23. ^ Albertin, Gabriele; Antoniutti, Stefano; Castro, Jesús; Scapinello, Federica (February 2014). "Preparation and reactivity of germyl complexes of ruthenium and osmium stabilised by cyclopentadienyl, indenyl and tris(pyrazolyl)borate fragments". Journal of Organometallic Chemistry. 751: 412–419. doi:10.1016/j.jorganchem.2013.06.028.
  24. ^ Dickinson, David P.; Evans, Simon W.; Grellier, Mary; Kendall, Hannah; Perutz, Robin N.; Procacci, Barbara; Sabo-Etienne, Sylviane; Smart, Katharine A.; Whitwood, Adrian C. (2019-02-11). "Photochemical Oxidative Addition of Germane and Diphenylgermane to Ruthenium Dihydride Complexes". Organometallics. 38 (3): 626–637. doi:10.1021/acs.organomet.8b00770. ISSN 0276-7333. S2CID 104464237.
  25. ^ Álvarez-Pazos, Nuria; Bravo, Jorge; García-Fontán, Soledad (September 2019). "Synthesis and reactivity of germyl complex of Ruthenium(II)". Inorganica Chimica Acta. 495: 118959. doi:10.1016/j.ica.2019.118959. S2CID 196864226.
  26. Ebsworth, E. A. V.; Rankin, D. W. H.; Sheldrick, G. M. (1968). "Preparation and properties of trigermyl-arsine and -stibine". Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 2828–2830. doi:10.1039/j19680002828. ISSN 0022-4944.
  27. ^ Mackay, K. M.; Stobart, S. R. (1973). "Transition-metal carbonyl derivatives of the germanes. Part IV. Germylpentacarbonylrhenium". Journal of the Chemical Society, Dalton Transactions (2): 214–217. doi:10.1039/dt9730000214. ISSN 0300-9246.
  28. Wang, Xuefeng; Andrews, Lester (2008-09-15). "Infrared Spectra, Structure, and Bonding of the GeH 3 —CrH, HGe≡MoH 3 , and HGe≡WH 3 Molecules in Solid Neon and Argon". Inorganic Chemistry. 47 (18): 8159–8166. doi:10.1021/ic800552s. ISSN 0020-1669. PMID 18698694.
  29. Lee, Vladimir Ya.; Sakai, Ryo; Takanashi, Kazunori; Gapurenko, Olga A.; Minyaev, Ruslan M.; Gornitzka, Heinz; Sekiguchi, Akira (2021-02-19). "Titanium Germylidenes". Angewandte Chemie International Edition. 60 (8): 3951–3955. doi:10.1002/anie.202015704. ISSN 1433-7851. PMID 33289313. S2CID 227947452.
Categories: