Misplaced Pages

Graphical lasso

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (July 2016)

In statistics, the graphical lasso is a sparse penalized maximum likelihood estimator for the concentration or precision matrix (inverse of covariance matrix) of a multivariate elliptical distribution. The original variant was formulated to solve Dempster's covariance selection problem for the multivariate Gaussian distribution when observations were limited. Subsequently, the optimization algorithms to solve this problem were improved and extended to other types of estimators and distributions.

Setting

Consider observations X 1 , X 2 , , X n {\displaystyle X_{1},X_{2},\ldots ,X_{n}} from multivariate Gaussian distribution X N ( 0 , Σ ) {\displaystyle X\sim N(0,\Sigma )} . We are interested in estimating the precision matrix Θ = Σ 1 {\displaystyle \Theta =\Sigma ^{-1}} .

The graphical lasso estimator is the Θ ^ {\displaystyle {\hat {\Theta }}} such that:

Θ ^ = argmin Θ 0 ( tr ( S Θ ) log det ( Θ ) + λ j k | Θ j k | ) {\displaystyle {\hat {\Theta }}=\operatorname {argmin} _{\Theta \geq 0}\left(\operatorname {tr} (S\Theta )-\log \det(\Theta )+\lambda \sum _{j\neq k}|\Theta _{jk}|\right)}

where S {\displaystyle S} is the sample covariance, and λ {\displaystyle \lambda } is the penalizing parameter.

Application

To obtain the estimator in programs, users could use the R package glasso, GraphicalLasso() class in the scikit-learn Python library, or the skggm Python package (similar to scikit-learn).

See also

References

  1. Friedman, Jerome; Hastie, Trevor; Tibshirani, Robert (2008-07-01). "Sparse inverse covariance estimation with the graphical lasso". Biostatistics. 9 (3): 432–441. doi:10.1093/biostatistics/kxm045. ISSN 1465-4644. PMC 3019769. PMID 18079126.
  2. Dempster, A. P. (1972). "Covariance Selection". Biometrics. 28 (1): 157–175. doi:10.2307/2528966. ISSN 0006-341X. JSTOR 2528966.
  3. Banerjee, Onureena; d'Aspremont, Alexandre; Ghaoui, Laurent El (2005-06-08). "Sparse Covariance Selection via Robust Maximum Likelihood Estimation". arXiv:cs/0506023.
  4. ^ Friedman, Jerome and Hastie, Trevor and Tibshirani, Robert (2008). "Sparse inverse covariance estimation with the graphical lasso" (PDF). Biostatistics. 9 (3). Biometrika Trust: 432–41. doi:10.1093/biostatistics/kxm045. PMC 3019769. PMID 18079126.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. Cai, T. Tony; Liu, Weidong; Zhou, Harrison H. (April 2016). "Estimating sparse precision matrix: Optimal rates of convergence and adaptive estimation". The Annals of Statistics. 44 (2): 455–488. arXiv:1212.2882. doi:10.1214/13-AOS1171. ISSN 0090-5364. S2CID 14699773.
  6. Jerome Friedman; Trevor Hastie; Rob Tibshirani (2014). glasso: Graphical lasso- estimation of Gaussian graphical models.
  7. Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E. (2011). "Scikit-learn: Machine Learning in Python". Journal of Machine Learning Research. arXiv:1201.0490. Bibcode:2012arXiv1201.0490P.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Jason Laska; Manjari Narayan (2017). "skggm 0.2.7: A scikit-learn compatible package for Gaussian and related Graphical Models". Zenodo. Bibcode:2017zndo....830033L. doi:10.5281/zenodo.830033.
Categories:
Graphical lasso Add topic