(Redirected from Horn hypergeometric series )
In the theory of special functions in mathematics , the Horn functions (named for Jakob Horn ) are the 34 distinct convergent hypergeometric series of order two (i.e. having two independent variables), enumerated by Horn (1931) (corrected by Borngässer (1933) ). They are listed in (Erdélyi et al. 1953 , section 5.7.1). B. C. Carlson revealed a problem with the Horn function classification scheme.
The total 34 Horn functions can be further categorised into 14 complete hypergeometric functions and 20 confluent hypergeometric functions. The complete functions, with their domain of convergence, are:
F
1
(
α
;
β
,
β
′
;
γ
;
z
,
w
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
+
n
(
β
)
m
(
β
′
)
n
(
γ
)
m
+
n
z
m
w
n
m
!
n
!
/
;
|
z
|
<
1
∧
|
w
|
<
1
{\displaystyle F_{1}(\alpha ;\beta ,\beta ';\gamma ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}(\beta )_{m}(\beta ')_{n}}{(\gamma )_{m+n}}}{\frac {z^{m}w^{n}}{m!n!}}/;|z|<1\land |w|<1}
F
2
(
α
;
β
,
β
′
;
γ
,
γ
′
;
z
,
w
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
+
n
(
β
)
m
(
β
′
)
n
(
γ
)
m
(
γ
′
)
n
z
m
w
n
m
!
n
!
/
;
|
z
|
+
|
w
|
<
1
{\displaystyle F_{2}(\alpha ;\beta ,\beta ';\gamma ,\gamma ';z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}(\beta )_{m}(\beta ')_{n}}{(\gamma )_{m}(\gamma ')_{n}}}{\frac {z^{m}w^{n}}{m!n!}}/;|z|+|w|<1}
F
3
(
α
,
α
′
;
β
,
β
′
;
γ
;
z
,
w
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
(
α
′
)
n
(
β
)
m
(
β
′
)
n
(
γ
)
m
+
n
z
m
w
n
m
!
n
!
/
;
|
z
|
<
1
∧
|
w
|
<
1
{\displaystyle F_{3}(\alpha ,\alpha ';\beta ,\beta ';\gamma ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m}(\alpha ')_{n}(\beta )_{m}(\beta ')_{n}}{(\gamma )_{m+n}}}{\frac {z^{m}w^{n}}{m!n!}}/;|z|<1\land |w|<1}
F
4
(
α
;
β
;
γ
,
γ
′
;
z
,
w
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
+
n
(
β
)
m
+
n
(
γ
)
m
(
γ
′
)
n
z
m
w
n
m
!
n
!
/
;
|
z
|
+
|
w
|
<
1
{\displaystyle F_{4}(\alpha ;\beta ;\gamma ,\gamma ';z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}(\beta )_{m+n}}{(\gamma )_{m}(\gamma ')_{n}}}{\frac {z^{m}w^{n}}{m!n!}}/;{\sqrt {|z|}}+{\sqrt {|w|}}<1}
G
1
(
α
;
β
,
β
′
;
z
,
w
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
+
n
(
β
)
n
−
m
(
β
′
)
m
−
n
z
m
w
n
m
!
n
!
/
;
|
z
|
+
|
w
|
<
1
{\displaystyle G_{1}(\alpha ;\beta ,\beta ';z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{m+n}(\beta )_{n-m}(\beta ')_{m-n}{\frac {z^{m}w^{n}}{m!n!}}/;|z|+|w|<1}
G
2
(
α
,
α
′
;
β
,
β
′
;
z
,
w
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
(
α
′
)
n
(
β
)
n
−
m
(
β
′
)
m
−
n
z
m
w
n
m
!
n
!
/
;
|
z
|
<
1
∧
|
w
|
<
1
{\displaystyle G_{2}(\alpha ,\alpha ';\beta ,\beta ';z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{m}(\alpha ')_{n}(\beta )_{n-m}(\beta ')_{m-n}{\frac {z^{m}w^{n}}{m!n!}}/;|z|<1\land |w|<1}
G
3
(
α
,
α
′
;
z
,
w
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
2
n
−
m
(
α
′
)
2
m
−
n
z
m
w
n
m
!
n
!
/
;
27
|
z
|
2
|
w
|
2
+
18
|
z
|
|
w
|
±
4
(
|
z
|
−
|
w
|
)
<
1
{\displaystyle G_{3}(\alpha ,\alpha ';z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{2n-m}(\alpha ')_{2m-n}{\frac {z^{m}w^{n}}{m!n!}}/;27|z|^{2}|w|^{2}+18|z||w|\pm 4(|z|-|w|)<1}
H
1
(
α
;
β
;
γ
;
δ
;
z
,
w
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
−
n
(
β
)
m
+
n
(
γ
)
n
(
δ
)
m
z
m
w
n
m
!
n
!
/
;
4
|
z
|
|
w
|
+
2
|
w
|
−
|
w
|
2
<
1
{\displaystyle H_{1}(\alpha ;\beta ;\gamma ;\delta ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{m+n}(\gamma )_{n}}{(\delta )_{m}}}{\frac {z^{m}w^{n}}{m!n!}}/;4|z||w|+2|w|-|w|^{2}<1}
H
2
(
α
;
β
;
γ
;
δ
;
ϵ
;
z
,
w
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
−
n
(
β
)
m
(
γ
)
n
(
δ
)
n
(
δ
)
m
z
m
w
n
m
!
n
!
/
;
1
/
|
w
|
−
|
z
|
<
1
{\displaystyle H_{2}(\alpha ;\beta ;\gamma ;\delta ;\epsilon ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{m}(\gamma )_{n}(\delta )_{n}}{(\delta )_{m}}}{\frac {z^{m}w^{n}}{m!n!}}/;1/|w|-|z|<1}
H
3
(
α
;
β
;
γ
;
z
,
w
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
2
m
+
n
(
β
)
n
(
γ
)
m
+
n
z
m
w
n
m
!
n
!
/
;
|
z
|
+
|
w
|
2
−
|
w
|
<
0
{\displaystyle H_{3}(\alpha ;\beta ;\gamma ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m+n}(\beta )_{n}}{(\gamma )_{m+n}}}{\frac {z^{m}w^{n}}{m!n!}}/;|z|+|w|^{2}-|w|<0}
H
4
(
α
;
β
;
γ
;
δ
;
z
,
w
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
2
m
+
n
(
β
)
n
(
γ
)
m
(
δ
)
n
z
m
w
n
m
!
n
!
/
;
4
|
z
|
+
2
|
w
|
−
|
w
|
2
<
1
{\displaystyle H_{4}(\alpha ;\beta ;\gamma ;\delta ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m+n}(\beta )_{n}}{(\gamma )_{m}(\delta )_{n}}}{\frac {z^{m}w^{n}}{m!n!}}/;4|z|+2|w|-|w|^{2}<1}
H
5
(
α
;
β
;
γ
;
z
,
w
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
2
m
+
n
(
β
)
n
−
m
(
γ
)
n
z
m
w
n
m
!
n
!
/
;
16
|
z
|
2
−
36
|
z
|
|
w
|
±
(
8
|
z
|
−
|
w
|
+
27
|
z
|
|
w
|
2
)
<
−
1
{\displaystyle H_{5}(\alpha ;\beta ;\gamma ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m+n}(\beta )_{n-m}}{(\gamma )_{n}}}{\frac {z^{m}w^{n}}{m!n!}}/;16|z|^{2}-36|z||w|\pm (8|z|-|w|+27|z||w|^{2})<-1}
H
6
(
α
;
β
;
γ
;
z
,
w
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
2
m
−
n
(
β
)
n
−
m
(
γ
)
n
z
m
w
n
m
!
n
!
/
;
|
z
|
|
w
|
2
+
|
w
|
<
1
{\displaystyle H_{6}(\alpha ;\beta ;\gamma ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{2m-n}(\beta )_{n-m}(\gamma )_{n}{\frac {z^{m}w^{n}}{m!n!}}/;|z||w|^{2}+|w|<1}
H
7
(
α
;
β
;
γ
;
δ
;
z
,
w
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
2
m
−
n
(
β
)
n
(
γ
)
n
(
δ
)
m
z
m
w
n
m
!
n
!
/
;
4
|
z
|
+
2
/
|
s
|
−
1
/
|
s
|
2
<
1
{\displaystyle H_{7}(\alpha ;\beta ;\gamma ;\delta ;z,w)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m-n}(\beta )_{n}(\gamma )_{n}}{(\delta )_{m}}}{\frac {z^{m}w^{n}}{m!n!}}/;4|z|+2/|s|-1/|s|^{2}<1}
while the confluent functions include:
Φ
1
(
α
;
β
;
γ
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
+
n
(
β
)
m
(
γ
)
m
+
n
x
m
y
n
m
!
n
!
{\displaystyle \Phi _{1}\left(\alpha ;\beta ;\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}(\beta )_{m}}{(\gamma )_{m+n}}}{\frac {x^{m}y^{n}}{m!n!}}}
Φ
2
(
β
,
β
′
;
γ
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
β
)
m
(
β
′
)
n
(
γ
)
m
+
n
x
m
y
n
m
!
n
!
{\displaystyle \Phi _{2}\left(\beta ,\beta ';\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\beta )_{m}(\beta ')_{n}}{(\gamma )_{m+n}}}{\frac {x^{m}y^{n}}{m!n!}}}
Φ
3
(
β
;
γ
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
β
)
m
(
γ
)
m
+
n
x
m
y
n
m
!
n
!
{\displaystyle \Phi _{3}\left(\beta ;\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\beta )_{m}}{(\gamma )_{m+n}}}{\frac {x^{m}y^{n}}{m!n!}}}
Ψ
1
(
α
;
β
;
γ
,
γ
′
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
+
n
(
β
)
m
(
γ
)
m
(
γ
′
)
n
x
m
y
n
m
!
n
!
{\displaystyle \Psi _{1}\left(\alpha ;\beta ;\gamma ,\gamma ';x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}(\beta )_{m}}{(\gamma )_{m}(\gamma ')_{n}}}{\frac {x^{m}y^{n}}{m!n!}}}
Ψ
2
(
α
;
γ
,
γ
′
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
+
n
(
γ
)
m
(
γ
′
)
n
x
m
y
n
m
!
n
!
{\displaystyle \Psi _{2}\left(\alpha ;\gamma ,\gamma ';x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m+n}}{(\gamma )_{m}(\gamma ')_{n}}}{\frac {x^{m}y^{n}}{m!n!}}}
Ξ
1
(
α
,
α
′
;
β
;
γ
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
(
α
′
)
n
(
β
)
m
(
γ
)
m
+
n
(
γ
′
)
n
x
m
y
n
m
!
n
!
{\displaystyle \Xi _{1}\left(\alpha ,\alpha ';\beta ;\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m}(\alpha ')_{n}(\beta )_{m}}{(\gamma )_{m+n}(\gamma ')_{n}}}{\frac {x^{m}y^{n}}{m!n!}}}
Ξ
2
(
α
;
β
;
γ
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
(
α
)
m
(
γ
)
m
+
n
x
m
y
n
m
!
n
!
{\displaystyle \Xi _{2}\left(\alpha ;\beta ;\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m}(\alpha )_{m}}{(\gamma )_{m+n}}}{\frac {x^{m}y^{n}}{m!n!}}}
Γ
1
(
α
;
β
,
β
′
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
(
β
)
n
−
m
(
β
′
)
m
−
n
x
m
y
n
m
!
n
!
{\displaystyle \Gamma _{1}\left(\alpha ;\beta ,\beta ';x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{m}(\beta )_{n-m}(\beta ')_{m-n}{\frac {x^{m}y^{n}}{m!n!}}}
Γ
2
(
β
,
β
′
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
β
)
n
−
m
(
β
′
)
m
−
n
x
m
y
n
m
!
n
!
{\displaystyle \Gamma _{2}\left(\beta ,\beta ';x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\beta )_{n-m}(\beta ')_{m-n}{\frac {x^{m}y^{n}}{m!n!}}}
H
1
(
α
;
β
;
δ
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
−
n
(
β
)
m
+
n
(
δ
)
m
x
m
y
n
m
!
n
!
{\displaystyle H_{1}\left(\alpha ;\beta ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{m+n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
2
(
α
;
β
;
γ
;
δ
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
−
n
(
β
)
m
(
γ
)
n
(
δ
)
m
x
m
y
n
m
!
n
!
{\displaystyle H_{2}\left(\alpha ;\beta ;\gamma ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{m}(\gamma )_{n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
3
(
α
;
β
;
δ
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
−
n
(
β
)
m
(
δ
)
m
x
m
y
n
m
!
n
!
{\displaystyle H_{3}\left(\alpha ;\beta ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{m}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
4
(
α
;
γ
;
δ
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
−
n
(
γ
)
n
(
δ
)
n
x
m
y
n
m
!
n
!
{\displaystyle H_{4}\left(\alpha ;\gamma ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\gamma )_{n}}{(\delta )_{n}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
5
(
α
;
δ
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
−
n
(
δ
)
m
x
m
y
n
m
!
n
!
{\displaystyle H_{5}\left(\alpha ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
6
(
α
;
γ
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
2
m
+
n
(
γ
)
m
+
n
x
m
y
n
m
!
n
!
{\displaystyle H_{6}\left(\alpha ;\gamma ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m+n}}{(\gamma )_{m+n}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
7
(
α
;
γ
;
δ
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
2
m
+
n
(
γ
)
m
(
δ
)
n
x
m
y
n
m
!
n
!
{\displaystyle H_{7}\left(\alpha ;\gamma ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m+n}}{(\gamma )_{m}(\delta )_{n}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
8
(
α
;
β
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
2
m
−
n
(
β
)
n
−
m
x
m
y
n
m
!
n
!
{\displaystyle H_{8}\left(\alpha ;\beta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }(\alpha )_{2m-n}(\beta )_{n-m}{\frac {x^{m}y^{n}}{m!n!}}}
H
9
(
α
;
β
;
δ
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
2
m
−
n
(
β
)
n
(
δ
)
m
x
m
y
n
m
!
n
!
{\displaystyle H_{9}\left(\alpha ;\beta ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m-n}(\beta )_{n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
10
(
α
;
δ
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
2
m
−
n
(
δ
)
m
x
m
y
n
m
!
n
!
{\displaystyle H_{10}\left(\alpha ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{2m-n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}}
H
11
(
α
;
β
;
γ
;
δ
;
x
,
y
)
≡
∑
m
=
0
∞
∑
n
=
0
∞
(
α
)
m
−
n
(
β
)
n
(
γ
)
n
(
δ
)
m
x
m
y
n
m
!
n
!
{\displaystyle H_{11}\left(\alpha ;\beta ;\gamma ;\delta ;x,y\right)\equiv \sum _{m=0}^{\infty }\sum _{n=0}^{\infty }{\frac {(\alpha )_{m-n}(\beta )_{n}(\gamma )_{n}}{(\delta )_{m}}}{\frac {x^{m}y^{n}}{m!n!}}}
Notice that some of the complete and confluent functions share the same notation.
References
'Profile: Bille C. Carlson' in Digital Library of Mathematical Functions . National Institute of Standards and Technology.
Carlson, B. C. (1976). "The need for a new classification of double hypergeometric series" . Proc. Amer. Math. Soc . 56 : 221–224. doi :10.1090/s0002-9939-1976-0402138-8 . MR 0402138 .
Borngässer, Ludwig (1933), Über hypergeometrische funkionen zweier Veränderlichen , Dissertation, Darmstadt
Erdélyi, Arthur; Magnus, Wilhelm ; Oberhettinger, Fritz; Tricomi, Francesco G. (1953), Higher transcendental functions. Vol I (PDF), McGraw-Hill Book Company, Inc., New York-Toronto-London, MR 0058756 , archived from the original (PDF) on 2011-08-11, retrieved 2015-08-23
Horn, J. (1931), "Hypergeometrische Funktionen zweier Veränderlichen" , Mathematische Annalen , 105 (1): 381–407, doi :10.1007/BF01455825 , S2CID 179177588
J. Horn Math. Ann. 111 , 637 (1933)
Srivastava, H. M.; Karlsson, Per W. (1985), Multiple Gaussian hypergeometric series , Ellis Horwood Series: Mathematics and its Applications, Chichester: Ellis Horwood Ltd., ISBN 978-0-85312-602-7 , MR 0834385
Categories :
Horn function
Add topic
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑